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Abstract
We adapt a set of mechanisms introduced by Klaus and Nichifor (Econ Theory 
70:665–684, 2020), serial dictatorship mechanisms with (individual) reservation 
prices, to the allocation of heterogeneous indivisible objects, e.g., specialist clinic 
appointments. We show how the characterization of serial dictatorship mechanisms 
with reservation prices for homogeneous indivisible objects (Klaus and Nichifor 
2020, Theorem  1) can be adapted to the allocation of heterogeneous indivisible 
objects by adding neutrality: mechanism � satisfies minimal tradability, individual 
rationality, strategy-proofness, consistency, independence of unallocated objects, 
neutrality, and non wasteful tie-breaking if and only if there exists a reservation 
price vector r and a priority ordering ≻ such that � is a serial dictatorship mecha-
nism with reservation prices based on r and ≻.

1 Introduction

We consider the problem of allocating heterogeneous indivisible objects to agents 
when each agent receives at most one object and pays a non-negative price. Each 
agent’s preferences over receiving an object and his own payment are given by a 
general utility function that is not necessarily quasilinear. A mechanism selects an 
outcome for the problem by allocating an object and specifying a payment for each 
agent, i.e., it selects an allotment for each agent. We are interested in mechanisms 
that have desirable properties. More specifically, we consider mechanisms that: sat-
isfy mild efficiency criteria (minimal tradability and non-wasteful tie-breaking); 
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induce voluntarily participation (individual rationality); elicit agents’ true prefer-
ences over objects (strategy-proofness); select outcomes that are robust, in the sense 
of remaining invariant when agents leave from the problem with their allotments 
(consistency) or when we remove undesired objects (independence of unallocated 
objects); and in which the names of the objects do not matter and the objects can be 
relabelled while the payments are kept invariant (neutrality).

We show that a mechanism � satisfies all the properties mentioned above if and 
only if there exists a reservation price vector r, which specifies an individual reser-
vation price for each agent that is the same for all objects, and a priority ordering ≻ 
over the set of agents, such that � is a serial dictatorship mechanism with reserva-
tion prices that is based on r and ≻ (Theorem 1). Our characterization is tight in the 
sense that each property used is indispensable.

Intuitively, a serial dictatorship mechanism with reservation prices works as fol-
lows. Agents sequentially get to choose feasible objects according to their priority, 
where the feasible objects are those remaining after all preceding agents made their 
choices: If the choosing agent’s value for his most preferred object among the feasi-
ble ones exceeds his reservation price, he takes the object and he pays his reserva-
tion price; otherwise, he receives and pays nothing.

Our model, properties, and mechanisms, are well-suited for understanding mar-
kets in which: wealth inequality among agents can be substantial; income redistri-
bution is not feasible; sequential priorities as a main criteria for rationing demand 
are considered fair (Konow 2003) and just (Dold and Khadjavi 2017)—and are thus 
desirable, while maintaining compatibility with some payments is also required. An 
example of such markets, albeit in a less general model than ours, is the allocation 
of similar “consultant-led” medical procedures in Australia (Klaus and Nichifor 
2020, Section 5); we briefly revisit this example in Sect. 4, after we present our main 
result (Theorem 1).

Our work is closely related to that of Klaus and Nichifor (2020). We extend their 
homogeneous indivisible objects model, normative properties, and the class of serial 
dictatorship mechanisms with reservation prices that they introduced, to heteroge-
neous indivisible objects. Our characterization (Theorem 1), which uses one addi-
tional key property, neutrality, provides a counterpart to the main result of Klaus 
and Nichifor (2020, Theorem 1).1

For settings in which agents’ preferences are given by linear orders and there are 
no payments, several characterizations of the classical serial dictatorship mecha-
nisms are available, e.g., Svensson (1994, 1999), Ergin (2000), and Ehlers and Klaus 
(2007). Relative to those settings, we extend the model to allow for general utility 
functions, and we adapt the properties used to characterize classical serial dictator-
ship mechanisms, as well as the mechanism itself, in a way in which we maintain 
sequential priorities as the main rationing criteria (as desired), but we relax the ear-
lier limitations that ruled out any payments. Our model and key properties end up 
being closer to those of Tadenuma and Thomson (1991) and Svensson and Larsson 

1 In Sect. 4, we discuss in detail the technical similarities and the differences between our Theorem 1 
and the main result of Klaus and Nichifor (2020, Theorem 1), as well as the role played by neutrality.
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(2002), who do not characterize any mechanism as such;2 in contrast, we charac-
terize the class of serial dictatorship mechanisms with reservation prices. Further-
more, in our characterization, the reservation price vector and the priority ordering 
are both derived from the properties, together with the serial dictatorship mechanism 
with reservation prices that is based on them; in this sense, our approach is related to 
the recent characterizations of deferred acceptance mechanisms (Kojima and Manea 
2010; Ehlers and Klaus 2014, 2016) in which the priorities (or more generally, the 
choice functions) that the mechanisms are based on, and the mechanisms, are all 
derived together from the properties.

2  Model

Our model extends the homogeneous objects model of Klaus and Nichifor (2020) 
to heterogeneous objects; to ease the comparison, our exposition and notation are 
closely based on that of Klaus and Nichifor (2020).

A set of heterogeneous indivisible objects are to be allocated to a set of agents; the 
sets of objects and the set of agents can change. Let ℕ be the set of potential agents 
and N  be the set of all non-empty finite subsets of ℕ , N ≡ {N ⊆ ℕ ∶ 0 < |N| < ∞} . 
Let � be the set of potential real objects and O be the set of all non-empty finite 
subsets of � , O ≡ {O ⊆ � ∶ 0 < |O| < ∞} . We assume that |�| > 1 and that � is 
infinite.3 By 0 we denote the null object, which represents not receiving a real object 
in �.

For any set of agents N ∈ N  and any set of real objects O ∈ O , an allocation 
vector a = (ai)i∈N ∈

(
O ∪ {0}

)N such that [for any two agents i, j ∈ N , i ≠ j , ai = aj 
implies ai = aj = 0 ] describes which agent in N receives which object in O ∪ {0} ; 
we allow for the possibilities that no real objects, or only some, are allocated. We 
denote the set of allocation vectors for a set of agents N ∈ N  and a set of real 
objects O ∈ O by A(N,O).

We assume that an agent i ∈ ℕ pays a non-negative price pi ∈ ℝ+ , 
and we denote the set of payment vectors for a set of agents N ∈ N  by 
P(N) ≡

{
p = (pi)i∈N ∶ p ∈ ℝ

N
+

}
.

We assume that agents only care about the object they receive and their own pay-
ment. Each agent i ∈ ℕ has preferences that are: (i) for any object, strictly decreasing 
in the price paid; (ii) such that for any real object, either there exists a price which 
makes the agent indifferent between [receiving the real object at this price] and 
[receiving the null object and paying nothing], or he strictly prefers to [obtain the 
real object, whatever the price] over [receiving the null object and paying nothing], 
or he strictly prefers to [receive the null object and pay nothing] over [obtaining the 
real object, whatever the price]; and (iii) strict when comparing any two real objects 
at the same price. Formally, for each O ∈ O and each i ∈ ℕ , we represent agent i’s 

2 We more precisely place each of the properties that we use within the relevant literature in Sect.  2, 
immediately after we formally introduce each property.
3 Finite sets of potential agents and potential real objects would not change any of our results.
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preferences by a utility function ui ∶ (O ∪ {0}) ×ℝ+ → ℝ that satisfies the follow-
ing three properties: 

 (i) if 0 ≤ p′
i
< pi , then for each o ∈ O , ui(o, p�i) > ui(o, pi) and ui(0, p�i) > ui(0, pi);

 (ii) for each o ∈ O , either
   [there exists a price vi,o such that ui(o, vi,o) = ui(0, 0) ], or
   [for each pi ≥ 0 , we have ui(o, pi) > ui(0, 0) and vi,o ≡ ∞ ] or
   [for each pi ≥ 0 , we have ui(0, 0) > ui(o, pi) and vi,o ≡ −∞ ]; 
   vi = (vi,o)o∈O is agent i’s valuation vector4 and we set vi,0 = 0.
 (iii) Agent i’s preferences over real objects are strict in the sense that for any 

pair of real objects o1, o2 ∈ O , o1 ≠ o2 , and any payment pi , we have 
ui(o1, pi) ≠ ui(o2, pi);

  hence, for each set of real objects O ∈ O and any payment pi , the 
best real object for agent i in O is well defined and we denote it by 
topi(O, pi) = argmaxo∈O{ui(o, pi)}.

Given ui ∶ (O ∪ {0}) ×ℝ+ → ℝ and o ∈ O , ui,o ∶ ℝ+ → ℝ denotes agent i’s induced 
utility function for object o, i.e., for any payment pi , ui,o(pi) = ui(o, pi).

An example of an agent i’s preferences are quasilinear preferences ui with 
valuation vector vi such that for all o1, o2 ∈ O , o1 ≠ o2 , vi,o1 ≠ vi,o2 and for each 
(ai, pi) ∈ (O ∪ {0}) ×ℝ+ , ui(ai, pi) = vi,ai − pi.

For any set of agents N ∈ N  and any set of real objects O ∈ O , we denote the set 
of utility (function) profiles by U(N,O) and the associated set of valuation (vector) 
profiles by V(N,O).

A problem � is specified by a triple (N,  O,  u) such that (N,O) ∈ N ×O and 
u ∈ U(N,O) . We denote the set of all problems for (N,O) ∈ N ×O by Γ(N,O).

An outcome for any problem � ∈ Γ(N,O) consists of an allocation vector 
a ∈ A(N,O) and a payment vector p ∈ P(N) . We denote the set of outcomes for a 
problem � ∈ Γ(N,O) by O(N,O) ≡ A(N,O) × P(N).

A mechanism � is a function that assigns an outcome to each problem. For-
mally, for each (N,O) ∈ N ×O and each � ∈ Γ(N,O) , �(�) ∈ O(N,O) . Note that 
we can also represent a mechanism � by its allocation rule � and payment rule 
� , i.e., for each (N,O) ∈ N ×O and each � ∈ Γ(N,O) , � ∶ Γ(N,O) → A(N,O) , 
� ∶ Γ(N,O) → P(N) , and �(�) = (�(�),�(�)) . We denote the allotment of agent i at 
outcome �(�) by �i(�) = (�i(�),�i(�)).

Given N ∈ N  , a vector x ∈ ℝ
N , and M ⊆ N , let xM ≡ (xi)i∈M ∈ ℝ

M be the restric-
tion of vector x to the subset of agents M. We also use the notation x−i = xN�{i} . For 
example, (x̄i, x−i) denotes the vector obtained from x by replacing xi with x̄i . We use 
corresponding notational conventions for utility profiles.

4 Requiring continuity of u
i
 would be a less general assumption that guarantees the existence of valua-

tion vector v
i
.
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2.1  Properties of mechanisms

Our first property ensures that if there are at least as many agents as objects, then 
there is some utility profile at which all objects are allocated.

Definition 1 (Minimal Tradability) A mechanism � satisfies minimal tradability if 
for each (N,O) ∈ N ×O such that |O| ≤ |N| , there exists a utility profile u ∈ U(N,O) 
such that 

⋃
i∈N{�i(N,O, u)} = O.

Minimal tradability was first introduced for single-object problems by Sakai 
(2013), and then extended to problems with homogeneous objects by Klaus and 
Nichifor (2020). Our definition of minimal tradability coincides with that of Sakai’s 
(2013) for single-object problems, but it is in character less demanding than that of 
Klaus and Nichifor (2020).5

For (N,O) ∈ N ×O , an outcome (a, p) ∈ O(N,O) is individually rational for utility 
profile u ∈ U(N,O) with associated valuation vector v ∈ V(N,O) if for each i ∈ N , 
we have ui(ai, pi) ≥ ui(0, 0) , or equivalently, 

 (IR1) [ai = 0 implies pi = 0 ] and
 (IR2) [for each o ∈ O , ai = o implies pi ≤ vi,o].

By requiring a mechanism to only choose individually rational outcomes, we express 
the idea of voluntary participation.

Definition 2 (Individual Rationality) A mechanism � satisfies individual rationality if for 
each (N,O) ∈ N ×O and each � ∈ Γ(N,O) , �(�) is an individually rational outcome.

Strategy-proofness requires that no agent can benefit from misrepresenting his 
preferences.

That is, a mechanism is strategy-proof if (in the associated direct revelation 
game) it is a weakly dominant strategy for each agent to report his utility truthfully.

Definition 3 (Strategy-Proofness) A mechanism � satisfies strategy-proofness if for 
each (N,O) ∈ N ×O , each (N,O, u) ∈ Γ(N,O) , each i ∈ N , and each u′

i
 such that 

u� ≡ (u�
i
, u−i) ∈ U(N,O) , ui(�i(N,O, u)) ≥ ui(�i(N,O, u

�)).

To introduce our next property, consistency, which is a key requirement in many 
frameworks with variable populations, we first define what a reduced problem is.

5 Klaus and Nichifor (2020) define minimal tradability by requiring that (i) if there are at least as many 
agents as objects, then there is some utility profile for which all objects are allocated and (ii) if there are 
more objects than agents, then there is some utility profile at which each agent receives an object. Our 
definition of minimal tradability is in character strictly weaker than that of Klaus and Nichifor (2020) 
because we drop their second requirement.
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Let (N,O) ∈ N ×O , � = (N,O, u) ∈ Γ(N,O) , and M ⊆ N . When the set of 
agents M leaves problem � with their 

⋃
i∈M �i(�) allocated objects, the set of 

remaining objects is ON⧵M = O⧵
⋃

i∈M �i(�) . Hence, the reduced problem is 
�N⧵M = (N⧵M,ON⧵M , uN⧵M) , where uN⧵M ∈ U(N⧵M,ON⧵M) is obtained from u by 
deleting the utilities of agents in M, as well as deleting the remaining N⧵M agents’ 
utilities for the objects 

⋃
i∈M �i(�) that were removed.6

Consistency is an invariance requirement of the solution if some agents leave 
together with their allotments. That is, consistency requires that if some agents leave 
with their allotments, then the allocation and the payment for all remaining agents 
should not change in the resulting reduced problem.

Definition 4 (Consistency) A mechanism � satisfies consistency if for each 
(N,O) ∈ N ×O , each � ∈ Γ(N,O) , and each M ⊆ N , we have �(�N⧵M) = �(�)N⧵M.

Consistency, first introduced by Thomson (1983), is one of the key properties in 
many frameworks with variable populations (see Thomson 2015). We use a similar 
notion of consistency as Tadenuma and Thomson (1991) do (since our models are 
similar) but adapt it to apply to functions (they allow for correspondences), and we 
decompose it into two properties: our consistency together with our next property, 
independence of unallocated objects, corresponds to the direct adaptation of Tade-
numa and Thomson’s consistency to our model.

Next, we require that if not all objects are allocated, removing some of the unal-
located objects leaves the outcome unchanged.

Definition 5 (Independence of Unallocated Objects) A mechanism � sat-
isfies independence of unallocated objects if for each (N,O) ∈ N ×O , 
each (N,O, u) ∈ Γ(N,O) , and each O� ⊆ O⧵

⋃
i∈N 𝛼i(N,O, u) , we have 

�(N,O, u) = �(N,O⧵O�, uO⧵O� ) , where uO⧵O� ∈ U(N,O⧵O�) is obtained from u by 
deleting the utility information for removed objects.

Independence of unallocated objects was introduced for a homogeneous objects 
allocation model by Klaus and Nichifor (2020) who required that removing all unal-
located objects leaves an outcome unchanged. We extend their property to allow for 
heterogeneous objects, and we require that only some, but not necessary all, unal-
located objects be removed.

To introduce our next property, neutrality, which is a key requirement in many 
frameworks in which the names of the objects should not matter in the allocation 
process, we first define what a relabelling of the objects is.

For each O ∈ O , a relabelling of the objects is given by a permutation function 
� ∶ O ∪ {0} → O ∪ {0} with �(0) = 0 , i.e., under � the names of the real objects are 
exchanged, e.g., object o ∈ O becomes object �(o) ∈ O , while the naming of the null 

6 Strictly speaking, the notation u
N⧵M has only been introduced for the removal of agents M from utility 

profile u but in the context of consistency, the additional adjustment to a smaller set of objects should 
neither be confusing nor require additional notation.
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object remains unchanged. We denote the set of relabellings for a set of real objects 
O ∈ O by S(O).

Let (N,O) ∈ N ×O and � ∈ S(O) . Then, for each utility profile u ∈ U(N,O) with 
associated valuation vector v ∈ V(N,O) , a relabelling of the utility profile u� ∈ U(N,O) 
with associated relabelling of valuation vector profile v� ∈ V(N,O) is such that for 
each i ∈ N and each o ∈ O , we have u�

i,o
= ui,�−1(o) and v�

i,o
= vi,�−1(o).

For example, consider N = {1, 2, 3} , O = {a, b, c} , utility profile u ∈ U(N,O) 
with associated valuation vector v ∈ U(N,O) , and a relabelling �(a) = b , �(b) = c , 
�(c) = a , and �(0) = 0 . Then, for each agent i ∈ N , ui = (ui,a, ui,b, ui,c) and 
vi = (vi,a, vi,b, vi,c) are relabelled by � to u�

i
= (u�

i,a
, u�

i,b
, u�

i,c
) = (ui,c, ui,a, ui,b) and 

v�
i
= (v�

i,a
, v�

i,b
, v�

i,c
) = (vi,c, vi,a, vi,b).

A mechanism is neutral if a relabelling of the objects results in each agent being 
allocated the object that is the relabelled version of the object that he was previously 
allocated, while the payments for all agents remain the same as before.

Definition 6 (Neutrality) A mechanism � satisfies neutrality if for each 
(N,O) ∈ N ×O , each � ∈ S(O) , and for each i ∈ N , we have

For our three agent and three object example above, if say �(N,O, u) = (a, b, c) 
and �(N,O, u) = (5, 0, 1) , then neutrality would imply that �(N,O, u�) = (b, c, a) and 
�(N,O, u�) = (5, 0, 1).

Neutrality was first introduced by Smith (1973) in a voting context. We use the same 
notion of neutrality as Svensson and Larsson (2002) do, and our models are similar, 
except that we allow for more general preferences than Svensson and Larsson who 
require quasilinear preferences.

Our last property requires that a mechanism does not select an outcome where an 
agent is indifferent between [receiving a real object at some price] and [not receiving an 
object and not paying anything, i.e., withdrawing from the market].

Definition 7 (Non Wasteful Tie-Breaking) A mechanism � satisfies non wasteful tie-
breaking if for each (N,O) ∈ N ×O , each � ∈ Γ(N,O) , each i ∈ N , and each o ∈ O , 
�i(�) = o implies that ui(o,�i(�)) ≠ ui(0, 0).

Non wasteful tie-breaking, first introduced by Klaus and Nichifor (2020), is a mild 
efficiency requirement: The tie-breaking, which rules out allocating a real object at 
some price to an agent who is indifferent between such an allotment and withdrawing 
from the market, is non-wasteful in that it keeps the object available, because another 
agent might strictly prefer to receive it.

�i(N,O, u
�) = �(�i(N,O, u)) and �i(N,O, u

�) = �i(N,O, u).
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3  Serial dictatorships with reservation prices

We adapt the class of serial dictatorships with reservation prices introduced by 
Klaus and Nichifor (2020) for the allocation of homogeneous indivisible objects 
to our model with heterogeneous indivisible objects as follows.

First, we need to define and fix reservation prices and a priority ordering.
We assume that for each agent i ∈ ℕ a (fixed) reservation price fi ≥ 0 exists. 

We interpret fi as the price at which a real object can be allocated to agent i. Note 
that the reservation price fi is the same for different real objects. We denote a vec-
tor of (fixed) reservation prices for the set of potential agents ℕ by f = (fi)i∈ℕ and 
by F  we denote the set of all (fixed) reservation price vectors for ℕ.

A priority ordering ⊳ over the set of potential agents ℕ is a complete, asym-
metric, and transitive binary relation, with the interpretation that for any two dis-
tinct agents i, j ∈ ℕ , i ⊳ j means that i has a higher priority than j. Note that the 
priority ordering ⊳ is the same for different real objects. Let P denote the set of 
all priority orderings over ℕ.

Given a reservation price vector f ∈ F  and a priority ordering ⊳∈ P , the 
serial dictatorship mechanism with reservation prices based on f and ⊳ is denoted 
by � (f ,⊳) and determines an outcome for each problem � = (N,O, u) ∈ Γ(N,O) 
with associated valuation vector v ∈ V(N,O) as follows.

Step 0: If there are no real objects to allocate, then stop and all agents receive and 
pay nothing. Otherwise, continue.

Step 1: The agent with the highest priority in N is considered. Let i ∈ N be this 
agent.

• If for his most preferred object topi(O, fi) in O, vi,topi(O,fi) > fi , then agent i 
obtains topi(O, fi) and pays fi . Set O1 ∶= O⧵{topi(O, fi)} . If O1 = � , then we 
stop and all remaining agents receive and pay nothing. Otherwise, continue.

• If vi,topi(O,fi) ≤ fi , then agent i receives and pays nothing. Set O1 ∶= O and con-
tinue.

Step l: The agent with the lth highest priority in N is considered. Let j ∈ N be this 
agent.

• If for his most preferred object topj(Ol−1, fj) in Ol−1 , vj,topj(Ol−1,fj)
> fj , then agent 

j obtains topj(Ol−1, fj) and pays fj . Set Ol ∶= Ol−1⧵{topj(Ol−1, fj)} . If Ol = � , 
then we stop and all remaining agents receive and pay nothing. Otherwise, 
continue.

• If vj,topj(Ol−1,fj)
≤ fj , then agent j receives and pays nothing. Set Ol ∶= Ol−1 and 

continue.
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We continue until either all real objects are allocated or all agents have been consid-
ered. We denote the resulting outcome by � (f ,⊳)(N,O, u).7

4  Characterization

Theorem  1 A mechanism � satisfies minimal tradability, individual rationality, 
strategy-proofness, consistency, independence of unallocated objects, neutrality, 
and non wasteful tie-breaking if and only if there exist a reservation price vector 
r ∈ F  and a priority ordering ≻∈ P such that � is a serial dictatorship mechanism 
with reservation prices based on r and ≻ , i.e., 𝜑 = 𝜓 (r,≻).

We formally prove Theorem  1 in Appendix  A. Below, we discuss how our result 
relates to that of Klaus and Nichifor (2020, Theorem 1), and we explain and sketch 
the more involved uniqueness part of our proof.

Recall that we extended the homogeneous indivisible objects model of Klaus 
and Nichifor (2020), their normative properties, and their class of serial dictatorship 
mechanisms with reservation prices to heterogeneous indivisible objects. For our 
characterization (Theorem 1), we use all the properties that are used by Klaus and 
Nichifor (2020, Theorem 1), suitably adapted from homogeneous to heterogeneous 
objects, to which we add one new key property: neutrality.

Except for neutrality, Klaus and Nichifor (2020, Section 5) interpret properties 
and mechanisms similar to those in our Theorem 1 in the context of allocating simi-
lar “consultant-led” medical procedures (e.g., mole removal surgeries) to patients 
in Australia. The same intuition and interpretation can be used for the allocation of 
heterogeneous objects by assuming that these objects are composed of a homogene-
ous item, corresponding to a specific medical procedure, together with a unique time 
slot.8 Furthermore, for such heterogeneous objects, neutrality has the natural inter-
pretation that it requires the out-of-pocket cost paid by a patient for the underlying 
medical procedure to be the same, regardless of when this procedure is scheduled.9

In our characterization (Theorem  1), as well as in that of Klaus and Nichifor 
(2020, Theorem 1), the uniqueness proof consists of four parts; next, we sketch these 
parts, highlighting the role played by neutrality.

Proof Sketch  (Uniqueness) We assume that � satisfies all the properties in the theo-
rem, and then proceed as follows: 

7 Note that if the reservation prices are zero for all agents, we obtain the classical serial dictatorship 
mechanism. That is, given the reservation price vector 0 = (0, 0,…) ∈ F  and a priority ordering ⊳∈ P , 
� (0,⊳) is a serial dictatorship mechanism.
8 For instance, two mole removal surgeries that are otherwise identical except for the fact that one is 
scheduled for next Monday, and the other one for next Tuesday, would yield two heterogeneous objects.
9 However, for genuinely different objects (e.g., a mole removal surgery versus a mastectomy), neutrality 
would be a very strong requirement.
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1. we construct the individual reservation price vector r ∈ F  (neutrality here implies 
that each agent’s reservation price is the same for any real object);

2. we construct the priority ordering ≻∈ P over ℕ (neutrality here implies that the 
priority ordering is the same for any real object);

3. for single-object problems, by Klaus and Nichifor (2020, Proof of Theorem 1, 
Part 3) it follows that 𝜑 = 𝜓 (r,≻) ; and

4. we extend the single-object result that 𝜑 = 𝜓 (r,≻) to any set of real objects O ∈ O 
via an induction argument.

Parts 1 and 2 bear some resemblance to the corresponding proofs of the main result 
in Klaus and Nichifor (2020, Proof of Theorem 1, Parts 1 and 2). Some work has to 
be done to make sure that these proofs still work for the allocation of heterogeneous 
objects; the additional proof steps that require neutrality in each part are key, and 
entirely new. Part 4 is very different from the corresponding proof part in Klaus and 
Nichifor (2020, Proof of Theorem 1, Part 4) due to the fact that we deal with hetero-
geneous instead of homogeneous objects.   ◻

The following examples present mechanisms that satisfy all the properties in Theo-
rem 1, except for the one in the title of the example.

Let f̃ ∈ F  be such that for all i ∈ ℕ , f̃i = 1 (all reservation prices are equal to 1) 
and ⊳̃ ∈ P be such that for any i, j ∈ ℕ , i < j implies i ⊳̃ j (lower indexed agents have 
higher priority). Most of our independence examples are modifications of the serial 
dictatorship mechanism with reservation prices based on f̃  and ⊳̃ , � (̃f ,⊳̃).

Example 1 (Minimal Tradability) The no-trade mechanism never allocates any real 
object and no payments are made.

Example 2 (Individual Rationality) Mechanism �̃ is a variation of � (̃f ,⊳̃) where 
only agent 1, if he is present, is treated differently in the allocation process that 
is based on � (̃f ,⊳̃) : agent 1 always pays his reservation price f1 = 1 , even if he is 
assigned the null object, and he only receives his best available real object o ∈ O if 
u1(o, 1) > u1(0, 1).

Example 3 (Strategy-Proofness) Mechanism �̂ is a variation of � (̃f ,⊳̃) where 
�̂ = � (̃f ,⊳̃) , but where agents who receive a real object o ∈ O pay 1

2
 instead of 1.

Example 4 (Consistency) Let ⊳∈ P such that ⊳≠ ⊳̃ . We apply � (̃f ,⊳) to problems 
� ∈ Γ(N,O) where the set of agents N has cardinality 2, and � (̃f ,⊳̃) otherwise.

Example 5 (Independence of Unallocated Objects) We apply � (̃f ,⊳̃) to each problem 
in which there are weakly less objects than agents who want them, and the no-trade 
mechanism (Example 1) otherwise.10

10 We say that an agent wants an object if his valuation is higher than his reservation price for it. The 
cases (i) weakly less objects than agents who want them, and (ii) more objects than agents who want 
them, are mutually exclusive and exhaustive. Note that removing agents together with their allotments 
cannot switch a problem between cases (i) and (ii); thus, consistency is satisfied. Meanwhile, removing 
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Example 6 (Neutrality) Let ⊳�∈ P be the priority orderings obtained from ⊳̃ by 
swapping the priorities of agents 1 and 2, i.e., at ⊳′ , agent 2 has the highest possible 
priority, and agent 1 has the highest possible priority after agent 2 (all other agents 
have lower priorities that do not change). We apply � (̃f ,⊳̃) to problems in which agent 
1 and object o are available, and object o is 1’s best real object top1(O, f̃1) , and � (̃f ,⊳�) 
otherwise.11

Example 7 (Non Wasteful Tie-Breaking) Let � (̃f ,⊳̃) be a modification of � (̃f ,⊳̃) such 
that an agent who is indifferent between [not receiving the null object and not pay-
ing anything] and [receiving his most preferred available real object and paying his 
reservation price] receives his most preferred available real object.
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Appendix

Proof of Theorem 1

It is easy to see that any serial dictatorship mechanism with reservation prices, 
induced by some reservation price vector f ∈ F and some priority ordering ≻∈ P , 
satisfies all the properties in the theorem.

11 To see that strategy-proofness is satisfied, note that the different priorities ⊳̃ and ⊳′ only matter when 
agents 1 and 2 have the same best (acceptable) object: if that best object is o, then agent 1 receives it and 
he has no incentive to misrepresent his preferences; otherwise, if that best object is different from o, then 
agent 1 receives his second best acceptable object or the null object (and again, he has no incentive to 
misrepresent his preferences). The case of agents 1 and 2 having the same best (acceptable) object, object 
o versus an object o′ ≠ o , also illustrates why neutrality is violated.

unallocated objects may switch a problem from (ii) to (i); thus, independence of unallocated objects is 
violated.

Footnote 10 (continued)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


156 B. Klaus, A. Nichifor 

1 3

For the uniqueness proof we assume that � satisfies all the properties in the theo-
rem; and, as announced in our proof sketch, we split the proof into four parts: first, 
we construct the individual reservation price vector r ∈ F  ; second, we construct the 
priority ordering ≻∈ P over ℕ ; third, we prove that 𝜑 = 𝜓 (r,≻) for single object prob-
lems; fourth, we extend the result that 𝜑 = 𝜓 (r,≻) to any set of real objects O ∈ O via 
an induction argument.

Part 1: individual reservation prices

For object allocation problems with one real object, Klaus and Nichifor (2020) 
have established the following lemma, which remains valid in our model.

Lemma 1 (Klaus and Nichifor 2020, Lemma 3) Assume that mechanism � satisfies 
minimal tradability, individual rationality, and strategy-proofness. Consider a real 
object o ∈ � . Then, for each agent i ∈ ℕ , there exists an individual reservation price 
ri,o ≥ 0 such that for each utility function ui ∈ U({i}, {o}) with associated valuation 
vector vi ∈ V({i}, {o}) : 

 (i) vi,o > ri,o implies �i({i}, {o}, ui) = (o, ri,o),
 (ii) vi,o = ri,o implies �i({i}, {o}, ui) ∈ {(0, 0), (o, ri,o)} , and
 (iii) vi,o < ri,o implies �i({i}, {o}, ui) = (0, 0).

Next, we show that the individual reservation prices do not depend on which 
real object o ∈ � is used in the above lemma.

Lemma 2 Assume that mechanism � satisfies minimal tradability, individual ration-
ality, strategy-proofness, and neutrality. Then, for each agent i ∈ ℕ and any two real 
objects o, ô ∈ �,

where ri is agent i’s reservation price.

Proof Assume that mechanism � satisfies all the properties in the lemma. Let i ∈ ℕ 
and consider o, ô ∈ � . If o = ô , then ri,o = ri,ô follows trivially. Hence, assume that 
o ≠ ô . Next, choose an (auxiliary) agent j ∈ ℕ , i ≠ j . We will specify the allotments 
of both agents i and j, but note that only that of agent i matters for our proof.

Let N = {i, j} and O = {o, ô} . By minimal tradability, there exist 
u = (ui, uj) ∈ U(N,O) with associated valuation vector v = (vi, vj) ∈ V(N,O) such 
that both real objects o and ô are allocated. Without loss of generality, assume 
�i(N,O, u) = o and 𝛼j(N,O, u) = ô . Then, by consistency and Lemma 1 (i) and (ii),

and

ri ∶= ri,o = ri,ô,

𝜑i({i, j}, {o, ô}, u) = 𝜑i({i}, {o}, ui,o) = (o, ri,o)
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respectively. In particular, note that

Consider the relabelling � ∈ S(O) such that 𝜎(o) = ô , 𝜎(ô) = o , and �(0) = 0 ; note 
that since there are only two real objects, � is the only possible relabelling. By 
neutrality,

and

Then, by consistency and Lemma 1 (i) and (ii),

and

respectively. In particular, note that

By neutrality, we must also have

which by (1) and (2) implies that

Since agent j and real objects o and ô were arbitrarily chosen, it follows that agent i 
has a unique reservation price ri(= ri,o = ri,ô) .   ◻

By our next lemma, for any problem, if an agent receives a real object, then his 
valuation has to be weakly larger than his individual reservation price (which also 
equals his payment); otherwise, his payment is necessarily null.

Lemma 3 Assume that mechanism � satisfies minimal tradability, individual ration-
ality, strategy-proofness, consistency, independence of unallocated objects, and neu-
trality. Then, for each (N,O) ∈ N ×O , each � ∈ Γ(N,O) with associated valuation 
vector v ∈ V(N,O) , each i ∈ N , and each o ∈ O , if �i(�) = o , then �i(�) = ri ≤ vi,o 
(with ri as obtained in Lemma 2).

𝜑j({i, j}, {o, ô}, u) = 𝜑j({j}, {ô}, uj,ô) = (ô, rj,ô),

(1)𝜋i(N,O, u) = ri,o and 𝜋j(N,O, u) = rj,ô.

𝛼i(N,O, u
𝜎) = ô = 𝜎(o) = 𝜎(𝛼i(N,O, u))

𝛼j(N,O, u
𝜎) = o = 𝜎(ô) = 𝜎(𝛼j(N,O, u)).

𝜑i({i, j}, {o, ô}, u
𝜎) = 𝜑i({i}, {ô}, u

𝜎

i,ô
) = (ô, ri,ô)

𝜑j({i, j}, {o, ô}, u
𝜎) = 𝜑j({j}, {o}, u

𝜎

j,o
) = (o, rj,o),

(2)𝜋i(N,O, u
𝜎) = ri,ô and 𝜋j(N,O, u

𝜎) = rj,o.

�i(N,O, u
�) = �i(N,O, u) and �j(N,O, u

�) = �j(N,O, u),

ri,o = ri,ô and rj,ô = rj,o.
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Proof Assume that mechanism � satisfies all the properties in the lemma. Let 
(N,O) ∈ N ×O , and � = (N,O, u) ∈ Γ(N,O) with associated valuation vec-
tor v ∈ V(N,O) . Let i ∈ N , o ∈ O , and �i(�) = o . If all agents but agent i leave 
with their allotments, then the reduced problem is �{i} = ({i},O{i}, ui) where 
O{i} = O⧵

⋃
j∈N⧵{i} �j(�) . By consistency, �i(�{i}) = �i(�) and �i(�{i}) = �i(�) = o . If 

O{i} = {o} , then �{i} = ({i}, {o}, ui) . If {o} ⊊ O{i} , then using independence of unal-
located objects, we obtain �i(�{i}) = �i({i}, {o}, ui).

Thus, �i({i}, {o}, ui) = �i(�) and �i({i}, {o}, ui) = �i(�) = o . By Lemma  1, 
vi,o ≥ ri and �i({i}, {o}, ui) = (o, ri) = �i(�) . In particular, �i(�) = ri ≤ vi,o .   ◻

Part 2: priority ordering

For object allocation problems with one real object, Klaus and Nichifor (2020, Proof 
of Theorem 1, Part 2) have shown that for any o ∈ � , there exists a (transitive) pri-
ority ordering ≻o∈ P over ℕ . More specifically, for any two agents i, j ∈ ℕ and any 
real object o ∈ � , let N = {i, j} and fix a utility profile (ūi, ūj) ∈ U(N, {o}) such that 
the associated valuation vector is v̄ = (ri + 1, rj + 1) . Then,

a result that remains valid in our model.
Next, we show that the priority ordering over agents does not depend on which 

real object o ∈ � is considered, i.e., we show that for two distinct real objects 
o, ô ∈ �,

Specifically, we show that for any two agents i, j ∈ ℕ , i ≠ j , we have 
i ≻o j if and only if i ≻ô j.

Let N = {i, j} and consider the problem where both objects are available, i.e., 
O = {o, ô} . Assume further that both agents would like to have object o while they 
are not interested in object ô , i.e., the utility profile u ∈ U(N,O) is such that 
u = (ui, uj) =

(
(ūi,o, u

0
i,ô
), (ūj,o, u

0
j,ô
)
)
 with associated valuation vector 

v = ((ri + 1, 0), (rj + 1, 0)) ∈ V(N,O) . We consider problem (N, O, u).
First, we show that object ô is not allocated. Suppose, by contradiction, that for 

x ∈ N , 𝛼x(N,O, u) = ô . Since vx,ô = 0 and prices are non-negative, by individual-
rationality (IR2), �x(N,O, u) = 0 . By non-wasteful tie-breaking, �x(N,O, u) = 0 
(otherwise, if 𝛼x(N,O, u) = ô , we would have ux(ô,𝜋x(N,O, u)) = ux(0, 0) ; a contra-
diction). Hence, for both agents x ∈ N , 𝛼x(N,O, u) ≠ ô.

Second, we show that object o has to be allocated to agent i. When removing unal-
located object ô from problem (N, O, u) we obtain problem (N, {o}, u{o}) ; by inde-
pendence of unallocated objects, we have that �i(N,O, u) = �i(N, {o}, u{o}) . Since 
problem (N, {o}, u{o}) = (N, {o}, (ūi, ūj)) , by (3), i ≻o j implies �i(N,O, u) = o.

(3)i ≻o j if and only if 𝛼i(N, {o}, (ūi, ūj)) = o,

≻o=≻ô .
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Third, consider the relabelling � ∈ S(O) such that 𝜎(o) = ô , 𝜎(ô) = o , and 
�(0) = 0 ; note that since there are only two real objects, � is the only possible rela-
belling. The relabelling of the utility profile is  
u𝜎 = (u𝜎

i
, u𝜎

j
) =

(
(u0

i,ô
, ūi,o), (u

0
j,ô
, ūj,o)

)
∈ U(N,O) with associated valuation vector. 

(
(0, ri + 1), (0, rj + 1)

)
∈ V(N,O) . By neutrality,

and

which by (3) implies i ≻ô j.
Thus, for any distinct agents i, j ∈ ℕ and any distinct real objects o, ô ∈ � , if 

i ≻o j , then i ≻ô j , which implies that ≻o=≻ô.
We denote the unique priority ordering over agents by ≻.

Part 3: single‑object problems

For object allocation problems with one real object, Klaus and Nichifor (2020, Proof 
of Theorem 1, Part 3) have shown that � always assigns the object and payments 
as if it is a serial dictatorship mechanism based on r ∈ F  (from Part 1) and ≻∈ P 
(from Part 2); their result remains valid in our model.

Part 4: an arbitrary set of real objects

We now show by induction on the number of objects that 𝜑 = 𝜓 (r,≻) for the general 
domain of all problems.

Induction basis |�| = �, � : Let N ∈ N  , O ∈ O , and � = (N,O, u) ∈ Γ(N,O) such 
that |O| = 0, 1 . Then, 𝜑(𝛾) = 𝜓 (r,≻)(𝛾) follows for |O| = 0 by individual rationality 
(IR1) and for |O| = 1 by Part 3.

Induction hypothesis |�| ≤ � : On the subdomain of problems where at most k ≥ 1 
real objects are available, we assume 𝜑 = 𝜓 (r,≻).

Induction step |�| = � + � : We show that for problems where k + 1 real objects are 
available, we have 𝜑 = 𝜓 (r,≻) . Let � = (�,�) and 𝜓 (r,≻) = (𝛼�,𝜋�).

Consider a set of agents N ∈ N  , a set of real objects O ∈ O such that |O| = k + 1 , 
and a utility profile u ∈ U(N,O) with associated valuation vector v ∈ V(N,O) . If 
no agent in N would like to receive a real object at problem (N, O, u), i.e., if for 
all i ∈ N and o ∈ O , vi,o ≤ ri , then by Lemma 3 and non-wasteful tie-breaking, for 
all i ∈ N , 𝜑i(N,O, u) = (0, 0) = 𝜓

(r,≻)

i
(N,O, u) . Hence, assume that for some agent 

i ∈ N and some real object o ∈ O , vi,o > ri . Without loss of generality assume that 
agent 1 is the highest priority agent in N according to ≻ such that for some real 
object o ∈ O , v1,o > r1.

𝛼i(N,O, u
𝜎) = ô = 𝜎(o) = 𝜎(𝛼i(N,O, u))

�j(N,O, u
�) = 0 = �(0) = �(�j(N,O, u)),
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First, we show that agent 1’s allotment under both mechanisms � and 𝜓 (r,≻) has to 
be the same; then, we show that the allotment of all other N⧵{1} agents under both 
mechanisms � and 𝜓 (r,≻) is also the same.

Claim 1: 𝜑1(N,O, u) = 𝜓
(r,≻)

1
(N,O, u).

We start by showing that �1(N,O, u) = �
�
1
(N,O, u) . Let ô ∶= top1(O, r1) . Thus, 

𝜓
(r,≻)

1
(N,O, u) = (ô, r1) and in particular, 𝛼�

1
(N,O, u) = ô.

Assume, by contradiction, that 𝛼1(N,O, u) ≠ ô.
Consider a utility function u�

1
=
(
u1,ô, (u

−∞
1,o�

)o�∈O⧵{ô}

)
∈ U({1},O) with valuation 

vector v�
1
= (v1,ô,−∞,… ,−∞) , i.e., v�

1,ô
= v1,ô and for all o� ∈ O⧵{ô} , v�

1,o�
= −∞ . 

Let u� = (u�
1
, u−1) . Then, by strategy-proofness, 𝛼1(N,O, u�) ≠ ô and 𝛼�

1
(N,O, u�) = ô . 

Additionally, using Lemma 3, �1(N,O, u�) = 0.

Case 1. There exists an agent i ∈ N⧵{1} such that 𝛼i(N,O, u�) = ô.
Recall that �1(N,O, u�) = 0 . Hence, when all agents except agents 1 and i leave 

with their allotments, we obtain the reduced problem ({1, i},O�, u�
{1,i}

) where 
ô ∈ O� ⊆ O . By consistency, we then have

Note that only object ô is allocated. Hence, when removing all unallocated objects 
from reduced problem ({1, i},O�, u�

{1,i}
) , we obtain the problem ({1, i}, {ô}, u�

{1,i}
) . 

By independence of unallocated objects, we then have

In particular it follows that

contradicting the Induction Basis (since for problems with one real object, agent 1 
as the highest priority agent who wants the object should receive it).

Case 2. For all agents i ∈ N⧵{1} , 𝛼i(N,O, u�) ≠ ô.
Recall that �1(N,O, u�) = 0 . Hence, when all agents except agent 1 leave with 

their allotments, we obtain the reduced problem ({1},O��, u�
1
) where ô ∈ O�� ⊆ O . 

By consistency, we then have

We now remove the set of unallocated real objects O��⧵{ô} and obtain the problem 
({1}, {ô}, u�

1
) . By independence of unallocated objects, we then have

In particular, it follows that

�1(N,O, u
�) = �1({1, i},O

�, u�
{1,i}

).

𝛼1({1, i},O
�, u�

{1,i}
) = 𝛼1({1, i}, {ô}, u

�
{1,i}

).

𝛼1({1, i}, {ô}, u
�
{1,i}

) = 𝛼1(N,O, u
�) = 0,

�1(N,O, u
�) = �1({1},O

��, u�
1
).

𝛼1({1},O
��, u�

1
) = 𝛼1({1}, {ô}, u

�
1
).
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contradicting the Induction Basis (since for problems with one real object, agent 1 
as the highest priority agent who wants the object should receive it).

Cases 1 and 2 now imply that 𝛼1(N,O, u�) = ô = 𝛼1(N,O, u) . Thus, as 
𝛼
�
1
(N,O, u) = ô , we have now shown that �1(N,O, u) = �

�
1
(N,O, u) . By Lemma 3, 

𝜑1(N,O, u) = 𝜓
(r,≻)

1
(N,O, u) = (ô, r1) , completing the proof of our claim.

Claim 2: for each i ∈ N⧵{1},𝜑
i
(N⧵{1},O

N⧵{1}, uN⧵{1}) = 𝜓
(r,≻)

i
(N⧵{1},O

N⧵{1}, uN⧵{1}).
When agent 1 leaves problem (N, O, u) with his allotment under both mecha-

nisms � and 𝜓 (r,≻) , we obtain the reduced problem (N⧵{1},ON⧵{1}, uN⧵{1}) . By 
consistency, for all i ∈ N⧵{1} , we then have

and

By the Induction Hypothesis, for all i ∈ N⧵{1} , we have

Taken together, our claims yield the desired result, i.e., 𝜑(N,O, u) = 𝜓 (r,≻)(N,O, u) .  
 ◻
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