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Various forms of substitutability are essential for establishing the existence of

equilibria and other useful properties in diverse settings such as matching, auc-

tions, and exchange economies with indivisible goods. We extend earlier models’

definitions of substitutability to settings in which each agent can be both a buyer

in some transactions and a seller in others, and show that all these definitions

are equivalent. We then introduce a new class of substitutable preferences that

allows us to model intermediaries with production capacity. We also prove that

substitutability is preserved under economically important transformations such

as trade endowments, mergers, and limited liability.

Keywords. Matching with contracts, substitutability, trading networks.

JEL classification. C62, C78, D44, D47.

1. Introduction

Various forms of substitutability are essential for establishing the existence of equilib-

ria and other useful properties in diverse settings such as matching, auctions, exchange

economies with indivisible goods, and trading networks (Kelso and Crawford 1982, Roth

1984, Bikhchandani and Mamer 1997, Gul and Stacchetti 1999, 2000, Milgrom 2000,

Ausubel and Milgrom 2005, Hatfield and Milgrom 2005, Sun and Yang 2006, 2009, Os-

trovsky 2008, Hatfield et al. 2013, Fleiner et al. 2017). Substitutability arises in a number

of important applications, including matching with distributional constraints (Abdulka-

diroğlu and Sönmez 2003, Hafalir et al. 2013, Ehlers et al. 2014, Echenique and Yenmez

2015), supply chains (Ostrovsky 2008), markets with horizontal subcontracting (Hatfield

et al. 2013), “swap” deals in exchange markets (Milgrom 2009), and combinatorial auc-

tions for bank securities (Klemperer 2010, Baldwin and Klemperer 2019).

The diversity of settings in which substitutability plays a role has led to a variety of

different definitions of substitutability, along with a number of restrictions on prefer-

ences that appear in some definitions but not in others.1 In this paper, we show how the

different definitions of substitutability are related to each other, while dispensing with

some of the restrictions made in the preceding literature.

We consider agents with quasilinear utility who can simultaneously be buyers in

some transactions and sellers in others; this allows us to embed the focal substitutabil-

ity concepts from the matching, auctions, and exchange economy literatures.2 As our

setting is more general than those used in most of the previous work (which considered

1For instance, some definitions assume “free disposal”/“monotonicity,” under which an agent is always
weakly better off with a larger set of goods than with a smaller one, while other definitions do not. Mean-
while, some definitions assume that all bundles of goods are feasible for each agent, while other definitions
do not.

2While all of the results in our paper consider the preferences of a single agent and, thus, do not de-
pend on the details of the agent’s setting, for concreteness, notational simplicity, and continuity with prior
literature, we state and prove these results in the general trading network setting of Hatfield et al. (2013).
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two-sided markets), we generalize the previous substitutability concepts where neces-
sary. Our main result then shows that all of the generalized substitutability concepts are
equivalent;3 we call preferences satisfying these conditions fully substitutable.4

Preferences are fully substitutable if goods or services bought and sold act as sub-
stitutes for each other. That is, under full substitutability, whenever an agent is offered
a new opportunity as a buyer, he neither wants to take any previously rejected oppor-
tunities as a buyer nor wants to reject any previously taken opportunities as a seller;
similarly, whenever an agent is offered a new opportunity as a seller, he neither wants to
take any previously rejected opportunities as a seller nor wants to reject any previously
taken opportunities as a buyer.

We introduce a rich new class of fully substitutable preferences that models the pref-
erences of intermediaries with production capacity; to show that these preferences are
fully substitutable, we rely on several properties of fully substitutable preferences that
we establish elsewhere in the paper. We also introduce a novel proof technique that
uses “dummy layers,” which simplifies modeling the preferences of a firm with several
alternative production technologies.

We prove that full substitutability is preserved under several economically impor-
tant transformations: trade endowments and obligations, mergers, and limited liability.
We show that full substitutability can be recast in terms of submodularity of the indirect
utility function, the single improvement property, and a condition from discrete con-
vex analysis called M�-concavity. Finally, we prove that (again, when the utilities of the
agents are quasilinear) full substitutability implies two key monotonicity conditions—
the Laws of Aggregate Supply and Demand—as well as a slightly stronger condition
called monotone–substitutability.

All of our results explicitly incorporate economically important features that were
not fully addressed in the earlier literature, such as indifferences, non-monotonicities,
and unbounded utility functions. In particular, unbounded utility functions allow us
to model firms with technological constraints under which some production plans are
infeasible (and will therefore never be undertaken under any vector of prices).

The full substitutability conditions we unify here are exactly the conditions needed
for the existence of competitive equilibria in the trading network setting we examined in
earlier work (Hatfield et al. 2013). Moreover, under full substitutability, the requirements
of competitive equilibrium are essentially equivalent to those of matching-theoretic sta-
bility and chain stability (Hatfield et al. 2013, 2018). Furthermore, as the Hatfield et al.
(2013) trading network framework generalizes both exchange economy settings (such
as Gul and Stacchetti (1999)) and combinatorial auction settings (such as Ausubel and

3Note that the concept of substitutability has also been extended to settings with externalities (see, e.g.,
Pycia and Yenmez 2017 and Rostek and Yoder 2018, 2019); we do not address such settings in this paper.
Likewise, we do not address various strengthenings or weakenings of the substitutability condition (see,
e.g., Klaus and Walzl 2009, Hatfield and Kojima 2010, Hatfield and Kominers 2019, Hatfield, Kominers, and
Westkamp 2019), or settings in which utility is not transferrable.

4We use the modifier “fully” to highlight the possibility that under such preferences, an agent can be
both a buyer in some transactions and a seller in others, whereas under the “gross substitutes” preferences
of Kelso and Crawford (1982), an agent can be only a buyer or only a seller.
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Milgrom (2002)), our work here gives a unified interpretation of substitutability for those
applications as well.

1.1 History and related literature

For two-sided settings, Kelso and Crawford (1982) introduced the (demand-theoretic)
gross substitutability condition, under which substitutability is expressed in terms of
changes in an agent’s demand as prices change. In exchange economies with indivisible
goods, gross substitutability guarantees the existence of core allocations and compet-
itive equilibria (Kelso and Crawford 1982, Gul and Stacchetti 1999, 2000). Roth (1984)
introduced a related (choice-theoretic) substitutability concept, which is expressed in
terms of how an agent’s choice responds to changes in the set of available options. In
two-sided matching settings, choice-theoretic substitutability guarantees the existence
of stable outcomes (Roth 1984, Hatfield and Milgrom 2005, Hatfield and Kominers 2017).

In a matching setting, Hatfield and Milgrom (2005, Theorem 2) showed that the
choice- and demand-theoretic substitutability conditions are essentially equivalent.
Ausubel and Milgrom (2002) offered an alternative definition of gross substitutability
for an auction setting with continuous prices, in which demand is not guaranteed to
be single-valued, and showed that their gross substitutability concept is equivalent to
submodularity of the indirect utility function. Gul and Stacchetti (1999) showed in an
exchange economy setting that (gross) substitutability is equivalent to submodularity of
the indirect utility function, as well as a single improvement property and a “no comple-
mentarities” condition. The various substitutability conditions for two-sided settings
were subsequently extended and generalized, giving rise to two (mostly) independent
literatures.

Ostrovsky (2008) generalized the choice-theoretic substitutability conditions to the
context of supply chain networks by introducing a pair of related assumptions, same-
side substitutability and cross-side complementarity, which impose two constraints:
First, when an agent’s opportunity set on one side of the market expands, that agent
does not choose any options previously rejected from that side of the market; second,
when an agent’s opportunity set on one side of the market expands, that agent does
not reject any options previously chosen from the other side of the market. Ostrovsky
(2008) and Hatfield and Kominers (2012) showed that under same-side substitutability
and cross-side complementarity, a stable outcome always exists if the contractual set
has a supply chain structure (see also Fleiner et al. 2017).

Meanwhile, Sun and Yang (2006) generalized the demand-theoretic substitutabil-
ity conditions to indivisible object allocation settings with a certain structured form of
complementarity. More specifically, the Sun and Yang (2006) gross substitutability and
complementarity condition, akin to the combination of same-side substitutability and
cross-side complementarity, requires that objects can be divided into two groups such
that objects in the same group are substitutes and objects in different groups are com-
plements; this condition guarantees the existence of competitive equilibria.

Hatfield, Jagadeesan, and Kominers (2019) showed that same-side substitutability
and cross-side complementarity are together equivalent to the assumption of weak qua-
sisubmodularity of the indirect utility function—an adaptation of submodularity to the
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setting without transfers.5  Sun and Yang (2009) showed that the gross substitutability
and complementarity condition is equivalent to submodularity of the indirect utility
function.

In this paper, we introduce a generalization of the same-side substitutability and
cross-side complementarity conditions of Ostrovsky (2008) to settings with indiffer-
ences. We also extend the gross substitutes and complements condition of Sun and
Yang (2006) to settings with fully general intermediary preferences. Then, using a no-
tation originally introduced by Hatfield and Kominers (2012), we give a reinterpretation
of both the choice- and demand-theoretic substitutability conditions, in terms of indi-
cator functions that track the underlying goods in the economy; in the process, we show
how to “fold” the general economy we consider into a Kelso and Crawford (1982) econ-
omy in which the underlying goods are (gross) substitutes.6 We show moreover that
all of the previously established connections between gross substitutability and more
technical conditions such as submodularity and the single improvement property ex-
tend to full substitutability as well (for suitable generalizations of the technical condi-
tions).

Subsequent to our work, Baldwin and Klemperer (2019) obtained additional insights
on the underlying mathematical structure of fully substitutable preferences using tech-
niques from tropical geometry. Baldwin and Klemperer (2019) studied the set of price
vectors for which the demand correspondence is multi-valued, and associated them
with convex-geometric objects called tropical hypersurfaces. Then, using the normal
vectors that determine agents’ tropical hypersurfaces, they distinguish among prefer-
ences that are strongly substitutable, are gross substitutable, or have complementari-
ties. Full substitutability corresponds to the “strong substitutes demand” condition of
Baldwin and Klemperer (2019).7

The discrete mathematics literature has explored several other concepts that are
equivalent to substitutability in certain settings. We connect to that literature in Sec-
tion 6.4, where we establish the equivalence of full substitutability and M�-concavity in
our setting.8

1.2 Organization of the paper

Our paper is organized as follows. In Section 2, we present our framework. In Section 3,
we present three definitions of full substitutability and show that they are all equiva-
lent. In Section 4, we present and explore several economically important classes of

5This is a correction of a result of Hatfield and Kominers (2012).
6This transformation, which we also applied in our previous work (Hatfield et al. 2013), generalizes an

idea introduced by Sun and Yang (2006).
7Baldwin and Klemperer (2019) also consider several other economically important classes of prefer-

ences for which the existence of competitive equilibria is guaranteed.
8Candogan et al. (2016) use this equivalence result to recast the problem of finding a competitive equi-

librium in a network economy as a discrete concave optimization problem, which in turn allows them
to construct computationally efficient algorithms for finding an equilibrium. Paes Leme (2017) provides a
detailed survey that covers the discrete-mathematical substitutability concepts and their algorithmic prop-
erties.



1540 Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp Theoretical Economics 14 (2019)

fully substitutable preferences. In Section 5, we discuss transformations that preserve

full substitutability. In Section 6, we provide several alternative characterizations of

full substitutability. In Section 7, we show that full substitutability implies monotone–

substitutability and, thus, the Laws of Aggregate Supply and Demand. Section 8 con-

cludes the main body of the paper. In Appendix A, we present six additional equivalent

definitions of full substitutability, which explicitly deal with indifferences in preferences.

All proofs are presented in Appendices A and B.

2. Model

The results we present consider the preferences of an individual agent and, thus, do

not depend on the environment in which that agent is located. However, for notational

convenience and for continuity with the related literature, we present these results in

the trading network setting of Hatfield et al. (2013).9

There is an economy with a finite set I of agents and a finite set � of trades. Each

trade ω ∈ � is associated with a buyer b(ω) ∈ I and a seller s(ω) ∈ I, with b(ω) �= s(ω).

We allow � to contain multiple trades associated to the same pair of agents, and allow

for the possibility of trades ω ∈ � and ψ ∈ � such that the seller of ω is the buyer of ψ,

i.e., s(ω)= b(ψ), and the seller of ψ is the buyer of ω, i.e., s(ψ)= b(ω).
A contract x is a pair (ω�pω) ∈�× R that specifies a trade and an associated price.

For a contract x = (ω�pω), we denote by b(x) ≡ b(ω) and s(x) ≡ s(ω) the buyer and

the seller associated with the trade ω of x. The set of possible contracts is X ≡ � × R.

A set of contracts Y ⊆X is feasible if it does not contain two or more contracts for the

same trade: formally, Y is feasible if (ω�pω)� (ω� p̂ω) ∈ Y implies that pω = p̂ω. We

call a feasible set of contracts an outcome. An outcome specifies a set of trades along

with associated prices, but does not specify prices for trades that are not in that set.

An arrangement is a pair [�;p], with � ⊆ � and p ∈ R�. Note that an arrangement

specifies prices for all the trades in the economy. For any arrangement [�;p], we denote

by κ([�;p])≡ ⋃
ψ∈�{(ψ�pψ)} ⊆X the outcome induced by [�;p].

For a set of contracts Y ⊆X and agent i ∈ I, we let Y→i ≡ {y ∈ Y : i = b(y)} denote

the set of agent i’s upstream contracts inY , i.e., the subset of contracts inY for which i is

the buyer. Similarly, we let Yi→ ≡ {y ∈ Y : i= s(y)} denote the set of agent i’s downstream

contracts in Y , i.e., the subset of contracts in Y for which i is the seller; we then let

Yi ≡ Y→i ∪ Yi→. We use analogous notation with regard to sets of trades � ⊆ �; that

is, �→i ≡ {ψ ∈ � : i = b(ψ)}, �i→ ≡ {ψ ∈ � : i = s(ψ)}, and �i ≡ �→i ∪�i→. For a set

of contracts Y ⊆X , we let τ(Y)≡ {ω ∈� : (ω�pω) ∈ Y for some pω ∈R} ⊆� denote the

set of trades associated with contracts in Y .

9In particular, presenting the results in the framework of Hatfield et al. (2013) allows us to apply the
results of Hatfield et al. (2013) in the proof of Theorem 4 (on “mergers” of agents with fully substitutable
preferences) in Section 5.2. In turn, Theorem 4 allows us to prove the full substitutability of preferences in
the “intermediary with production capacity” preference class that we introduce in Section 4.2.
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2.1 Preferences

Each agent i has a valuation (or preferences) ui : ℘(�i)→ R∪{−∞} over the sets of trades
in which he is involved, with ui(∅) ∈ R.10 The utility functions we allow here are quite
general: We do not impose any monotonicity/free disposal conditions on agents’ pref-
erences, and, thus, trades can represent both “goods” and “bads.” Moreover, we allow
the utility of agent i to equal −∞, formalizing the idea that i, due to technological con-
straints, may only be able to produce or sell certain outputs contingent upon procuring
appropriate inputs; e.g., if ψ�ω ∈ � with b(ψ) = s(ω) = i and agent i cannot sell ω un-
less he has procured ψ, then ui({ω}) = −∞.11 The assumption that ui(∅) is finite for
each i ∈ I implies that no agent is obligated to engage in market transactions at highly
unfavorable prices; he can always choose a (finite) outside option.

The valuation ui over bundles of trades gives rise to a quasilinear utility function
Ui over bundles of trades and associated transfers. Specifically, for any feasible set of
contracts Y ⊆X , we define

Ui(Y)≡ ui
(
τ(Y)

) +
∑

(ω�pω)∈Yi→
pω −

∑
(ω�pω)∈Y→i

pω�

and, slightly abusing notation, for any arrangement [�;p], we define

Ui
([�;p]) ≡ ui(�)+

∑
ψ∈�i→

pψ −
∑

ψ∈�→i

pψ�

Note that by construction, Ui([�;p])=Ui(κ([�;p])).
The choice correspondence of agent i from the set of contracts Y ⊆X is defined by

Ci(Y)≡ arg max
Z⊆Yi;Z is feasible

{
Ui(Z)

}
�

Note that the choice correspondence can be multi-valued because of indifferences; that
is, it is possible that |Ci(Y)|> 1. Moreover, each element of the choice correspondence is
a set of contracts, and so for Y ∗ ∈ Ci(Y) we have Y ∗ ∈ ℘(Y); in particular, we may have
|Y ∗| > 1 (even when |Ci(Y)| = 1).12 Also, the choice correspondence may be empty-
valued (e.g., if Y is the set of all contracts with prices strictly between 0 and 1 for a par-
ticular trade, i.e., Y = {(ω�pω) : pω ∈ (0�1)} and ui({ω}) = 1). When the set Y is finite,
the choice correspondence is also guaranteed to contain at least one element.

The demand correspondence of agent i, given a price vector p ∈R�, is defined by

Di(p)≡ arg max
�⊆�i

{
Ui

([�;p])}�
Like the choice correspondence, the demand correspondence can be multi-valued; that
is, � ∈ Di(p) is an optimal set of trades for agent i given prices p. (Unlike the choice
correspondence, the demand correspondence always contains at least one element.)

10We assume that trades in � \�i do not affect i, and abuse notation slightly by writing ui(�)≡ ui(�i)

for�⊆�. We use ℘(·) to denote the power set.
11In the classical exchange economy literature (Bikhchandani and Mamer 1997, Gul and Stacchetti 1999),

the valuation of an agent i is defined over bundles of objects � as ui : ℘(�i)→ R, and is normalized such
that ui(∅)= 0. While these assumptions are completely innocuous and natural in the context of exchange
economies, they immediately rule out the kinds of technological constraints discussed above.

12Note that this notation is distinct from the standard notation used in settings without transferrable
utility, where (as preferences are usually assumed to be strict) Ci(·) is defined as a function instead of a
correspondence, and so an element of Ci(Y) is a contract in the unique optimal choice from Y .
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3. Substitutability concepts

We now introduce three substitutability concepts that generalize the existing definitions
from matching, auctions, and exchange economies. In the matching literature, it is stan-
dard to formulate substitutability in terms of choice functions and to consider expan-
sions of the set of available contracts on one side. In the literature on economies with
indivisible goods, it is standard to formulate substitutability in terms of demand func-
tions and to consider disadvantageous price changes, i.e., increases in input prices or
decreases in output prices. Finally, in auction theory, it is standard to formulate substi-
tutability in terms of demand functions and to consider an increase (or decrease) of the
entire price vector.

In this section, for ease of exposition and to allow for a more direct comparison
of the different substitutability concepts, we follow the approach of Ausubel and Mil-
grom (2002), and restrict attention to opportunity sets and vectors of prices for which
choices and demands are single-valued. In Appendix A, we introduce additional def-
initions that explicitly deal with indifferences and multi-valued correspondences, and
prove that those definitions are equivalent to each other and to the definitions given in
this section.

3.1 Choice-language full substitutability

First, we define full substitutability in the language of choices, adapting and merging the
Ostrovsky (2008) same-side substitutability and cross-side complementarity conditions.
Setting conditions on how each agent’s optimal choice changes as that agent’s opportu-
nity set expands originated in the matching literature, where it is natural to consider an
expansion in the set of available trades and, thus, an expansion in the set of available
contracts (see Ostrovsky 2008, Westkamp 2010, Hatfield and Kominers 2012, Hatfield
et al. 2013, and Hatfield, Kominers, and Westkamp 2019). In choice language, we say that
a choice correspondenceCi is fully substitutable if, when attention is restricted to sets of
contracts for which Ci is single-valued, whenever the set of options available to i on one
side expands, i rejects a larger set of contracts on that side (same-side substitutability)
and selects a larger set of contracts on the other side (cross-side complementarity).

Definition 1. The preferences of agent i are choice-language fully substitutable (CFS)
if both:

(i) for all sets of contracts Y�Z ⊆X such that |Ci(Z)| = |Ci(Y)| = 1, Yi→ = Zi→, and
Y→i ⊆ Z→i, for the unique Y ∗ ∈ Ci(Y) and Z∗ ∈ Ci(Z), we have that Y→i \ Y ∗

→i ⊆
Z→i \Z∗

→i and Y ∗
i→ ⊆Z∗

i→; and

(ii) for all sets of contracts Y�Z ⊆X such that |Ci(Z)| = |Ci(Y)| = 1, Y→i = Z→i, and
Yi→ ⊆ Zi→, for the unique Y ∗ ∈ Ci(Y) and Z∗ ∈ Ci(Z), we have that Yi→ \ Y ∗

i→ ⊆
Zi→ \Z∗

i→ and Y ∗
→i ⊆Z∗

→i.

Note that here we restrict attention to situations in which the choice correspondence
is single-valued. As we describe after Theorem 1, CFS is equivalent to two seemingly
more restrictive definitions that explicitly deal with the multi-valued parts of the choice
correspondence (see Section 3.4 and Appendix A).
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3.2 Demand-language full substitutability

Our second definition uses the language of prices and demands, adapting the gross sub-
stitutes and complements condition (GSC) of Sun and Yang (2006).13 We say that a de-
mand correspondence Di is fully substitutable if, when attention is restricted to prices
for which demands are single-valued, a decrease in the price of some inputs for agent
i leads to a decrease in his demand for other inputs and to an increase in his supply of
outputs, and an increase in the price of some outputs leads to a decrease in his supply
of other outputs and an increase in his demand for inputs.

Definition 2. The preferences of agent i are demand-language fully substitutable
(DFS) if both:

(i) for all price vectors p�p′ ∈ R� such that |Di(p)| = |Di(p′)| = 1, pω = p′
ω for all

ω ∈�i→, and pω ≥ p′
ω for all ω ∈�→i, for the unique � ∈Di(p) and �′ ∈Di(p′),

we have that {ω ∈�′
→i : pω = p′

ω} ⊆�→i and�i→ ⊆�′
i→; and

(ii) for all price vectors p�p′ ∈ R� such that |Di(p)| = |Di(p′)| = 1, pω = p′
ω for all

ω ∈�→i, and pω ≤ p′
ω for all ω ∈�i→, for the unique � ∈Di(p) and �′ ∈Di(p′),

we have that {ω ∈�′
i→ : pω = p′

ω} ⊆�i→ and�→i ⊆�′
→i.

3.3 Indicator-language full substitutability

Our third definition is essentially a reformulation of Definition 2, using a convenient
vector notation due to Hatfield and Kominers (2012). For each agent i, for any set of
trades � ⊆ �i, define the (generalized) indicator function ei(�) ∈ {−1�0�1}�i to be the
vector with component ei�ω(�) = 1 for each upstream trade ω ∈�→i, ei�ω(�) = −1 for
each downstream trade ω ∈�i→, and ei�ω(�)= 0 for each trade ω /∈�. The interpreta-
tion of ei(�) is that an agent buys a strictly positive amount of a good if he is the buyer
in a trade in�, and “buys” a strictly negative amount if he is the seller of such a trade.

Definition 3. The preferences of agent i are indicator-language fully substitutable
(IFS) if for all price vectors p�p′ ∈ R� such that |Di(p)| = |Di(p′)| = 1 and p ≤ p′, for
the unique � ∈Di(p) and �′ ∈Di(p′), we have ei�ω(�) ≤ ei�ω(�′) for each ω ∈�i such
that pω = p′

ω.

Definition 3 clarifies the reason for the term “full substitutability”: an agent is more
willing to “demand” a trade (i.e., keep an object that he could potentially sell or buy an
object that he does not initially own) if prices of other trades increase.

3.4 Equivalence of the definitions

The main result of this section is that the three definitions of full substitutability pre-
sented thus far are all equivalent. Subsequently, we use the term full substitutability to
refer to all our substitutability concepts.

13The definition of full substitutability that corresponds directly to GSC is demand-language contraction
full substitutability (Definition A.4); that said, there is a subtlety in interpreting the relationship between the
Sun and Yang (2006) model and ours (see Appendix A.2).
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Theorem 1. Choice-language full substitutability (CFS), demand-language full substi-
tutability (DFS), and indicator-language full substitutability (IFS) are equivalent.

The intuition behind Theorem 1 is that, under all three substitutability concepts,
when i receives new options as a buyer, i becomes weakly less interested in other pur-
chase opportunities and weakly more interested in other sale opportunities. In choice-
language substitutability, part (i) of CFS (Definition 1) explicitly considers expanding the
set of contracts available to i as a buyer. Meanwhile, in demand-language substitutabil-
ity, part (i) of DFS (Definition 2) considers reducing the prices of trades available to i
as a buyer, implicitly expanding the set of contracts available to i as a buyer. Indicator-
language substitutability requires that when prices for trades for which i is a buyer fall,
i becomes weakly less interested in any purchase opportunity for which the price does
not fall and weakly more interested in any sale opportunity for which the price does not
fall.

Recall that to ease the exposition and to allow for an easier and more transparent
comparison of different substitutability concepts, throughout this section we restricted
attention to opportunity sets and vectors of prices for which choices and demands are
single-valued. In Appendix A, we introduce additional definitions of full substitutability
that explicitly deal with the multi-valued nature of the choice and demand correspon-
dences. We then prove that the definitions introduced in Appendix A, as well as CFS,
DFS, and IFS, are all equivalent (Theorem A.1). Theorem 1 thus follows immediately
from Theorem A.1. Moreover, since Definitions 1–3 are equivalent to the definitions that
explicitly consider the multi-valued nature of the choice and demand correspondences,
it is sufficient to work with the conditions in Definitions 1–3; in particular, requiring
that all agents’ preferences satisfy any of Definitions 1–3 is sufficient to guarantee the
existence of stable outcomes and competitive equilibria (Hatfield et al. 2013).

4. Classes of fully substitutable preferences

Full substitutability is a natural condition, but it does rule out certain classes of pref-
erences. For instance, full substitutability rules out situations in which an agent would
only be willing to sell multiple units of a good at a particular price, but not one unit
(at that same price). Full substitutability also precludes situations in which one agent’s
multiple inputs are complements. More generally, complementarities in production are
ruled out because inputs are required to be substitutes for each other. Similarly, full sub-
stitutability rules out economies of scale because it requires that outputs cannot com-
plement each other, as they would in the case when producing more outputs makes it
possible to overcome initial fixed costs and/or adopt more efficient production technol-
ogy.14 Full substitutability also places more subtle restrictions: in Section 4.2, we provide
an example showing that the full substitutability assumption can also rule out the case
of preferences representing an agent who is capacity constrained and requires different
types of inputs to produce different types of outputs.15

14For an extended discussion, see Ostrovsky (2008, Section I.A) and Hatfield et al. (2013, Section II.B).
15To overcome the modeling difficulties associated with allowing for complementarities, authors have

made various assumptions on functional forms of production (Pycia 2012, Dur and Ikizler 2016, Rostek
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At the same time, full substitutability also allows for many rich types of preferences.
By construction, fully substitutable preferences include, as a special case, “one-sided”
preferences that satisfy the gross substitutability condition of Kelso and Crawford (1982).
Gross substitutability has been extensively studied in the literatures on matching, com-
petitive equilibrium, and discrete convex optimization,16 and a variety of examples
and classes of preferences satisfying the gross substitutability condition have been pre-
sented.17

Beyond one-sided preferences, it is easy to see that the full substitutability condi-
tion allows for environments with homogeneous goods in which agents have increasing
marginal costs of production and diminishing marginal utilities of consumption. It also
allows for richer classes of “two-sided” preferences that involve complementarities be-
tween the contracts an agent can execute as a buyer and those that he can execute as
a seller; in Sections 4.1 and 4.2, we introduce, formally model, and discuss two such
classes of preferences.

4.1 Preferences of intermediaries

We start with intermediary preferences, introduced by Hatfield et al. (2013) in the con-
text of used car dealers, but applicable more generally.18

The preferences of an intermediary i are represented as follows: Consider an agent i
who has access to a number of heterogeneous inputsY→i (e.g., used cars, raw diamonds,
or temporary workers) and to a set of requests Yi→ (e.g., for used cars, for engagement
rings, or for temp services). Each element (ϕ�pϕ) ∈ Y→i specifies the characteristics of
the particular input and the price at which this input is available to intermediary i. Each
element (ψ�pψ) ∈ Yi→ specifies the characteristics required by the contract’s customer
and the price that customer is willing to pay. Some inputs ϕ and requests ψ are com-
patible with each other, while others are not.19 For every compatible input–request pair
(ϕ�ψ), there is also a cost cϕ�ψ of preparing the input ϕ to satisfy the compatible request
ψ.20 Intermediary i’s objective is to match some of the inputs in Y→i to some of the

and Yoder 2018, 2019), or worked in either large-market limit environments (Kojima et al. 2013, Azevedo
and Hatfield 2018, Che et al. 2019, Jagadeesan 2019) or in settings in which goods are perfectly divisible
(Hatfield and Kominers 2015, Bando et al. 2019).

16See, e.g., Kelso and Crawford (1982), Hatfield and Milgrom (2005), Milgrom (2009), Milgrom and
Strulovici (2009), Ostrovsky and Paes Leme (2015), and Paes Leme (2017).

17For instance, Klemperer (2010) makes use of gross substitutable preferences in the design of the
“Product-Mix” auction, which has been and continues to be used by the Bank of England to allocate funds
to banks via securitized loans. Similarly, preferences in electricity markets can often be expressed substi-
tutably via assignment messages (Milgrom 2009).

18A closely related class of preferences was introduced by Sun and Yang (2006, Section 4) in the context
of two-sided markets in which agents on one side (firms) have preferences over agents and objects on the
other side (workers and machines) that are determined by the productivity of each worker on each machine
(see the discussion at the end of Section 4.2 for more detail).

19For instance, a given raw diamond can only be turned into a polished diamond of certain grades. Sim-
ilarly, a particular temp worker is only qualified to perform certain types of jobs.

20For example, cϕ�ψ may be the cost of repairing a car, turning a diamond into an engagement ring, or
training a worker to perform a specific set of tasks. Note that we could formally allow all pairs of inputs and
requests to be compatible, and encode incompatibilities by setting cϕ�ψ = ∞ for some pairs (ϕ�ψ).
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requests in Yi→ in a way that maximizes his profit,
∑
(ϕ�ψ)∈μ(pψ − pϕ − cϕ�ψ), where μ

denotes the set of compatible input–request pairs that the intermediary selects.
Formally, following Hatfield et al. (2013), define a matching, μ, as a set of pairs of

trades (ϕ�ψ) such that ϕ is an element of�→i (i.e., an input available to intermediary i),
ψ is an element in �i→ (i.e., a request received by i), ϕ and ψ are compatible, and each
trade in �i belongs to at most one pair in μ. Slightly abusing notation, let the cost of
matching μ, c(μ), be equal to the sum of the costs of pairs involved in μ (i.e., c(μ) =∑
(ϕ�ψ)∈μ cϕ�ψ).

For a set of trades ⊆�i, let M() denote the set of matchings μ of elements of 
such that every element of  belongs to exactly one pair in μ.21 Then the valuation of
intermediary i over sets of trades ⊆�i is given by

ui()=
{

−minμ∈M()

{
c(μ)

}
if M() �= ∅

−∞ if M()= ∅�

i.e., ui() is equal to the cost of the cheapest way of matching all requests and inputs in
 if such a matching is possible, and is equal to −∞ otherwise.22 (Note that ui(∅)= 0.)
The utility function of i over feasible sets of contracts is induced by valuation ui in the
standard way formalized in Section 2.1.

Proposition 1 (Hatfield et al. 2013, Proposition 1). Any intermediary has fully substi-
tutable preferences.

Hatfield et al. (2013) presented a rather involved proof of Proposition 1. Sun and
Yang (2006) also present an elaborate proof of an analogous result for the two-sided set-
ting (Theorem 4.1 in their paper, with the proof on pages 1397–1401). The results of the
current paper allow us to construct a much simpler and shorter proof, which we present
in Appendix B. Proposition 1 follows as a special case of Proposition 2, which shows the
full substitutability of the new class of preferences that we introduce in the next section,
i.e., the class of preferences of intermediaries with production capacity. Proposition 2,
in turn, follows directly from our result on mergers of agents with fully substitutable
preferences (Theorem 4 in Section 5.2).

4.2 Preferences of intermediaries with production capacity

For the intermediary preferences considered in Section 4.1, the intermediary either does
not need to use any of his own resources to facilitate the matches between inputs and
requests, or when he does, those resources can be expressed in monetary terms: there is
a cost cϕ�ψ of “preparing” input ϕ for requestψ. In some settings, however, we may want
to consider intermediaries who need to rely on specific physical resources that they have

21Of course, M() can be empty; e.g., it is empty if the number of inputs in is not equal to the number
of requests or if there are some requests in  that are not compatible with any inputs in .

22Under this valuation function, any set chosen by intermediary i will contain an equal number of offers
and requests. In principle, we could consider a more general (yet still fully substitutable) valuation function
in which an intermediary has utility for an input that he does not resell. In that case, the intermediary may
end up choosing more offers than requests.
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so as to turn inputs into outputs, and it is more appropriate to think of these resources
as fixed. For example, a manufacturer may have a fixed set of machines, and needs to
assign a set of workers to those machines and at the same time needs to decide which
outputs to produce on each individual machine. An agricultural firm may have a fixed
set of land lots, and needs to hire workers to work on those lots and at the same time
needs to decide which outputs to produce. A steel manufacturer has access to a variety
of inputs (different sources of iron ore and scrap metal) and can produce a variety of
outputs (different grades and types of steel products), and needs to assign these inputs
and outputs to the fixed number of steel plants that it has.

In general, the preferences of an agent with capacity constraints may not be fully
substitutable. For example, consider a firm that has exactly one machine, can hire work-
ers Ann and Bob, and has requests for outputs α and β. Suppose Ann can use the ma-
chine to produce output α (but notβ), while Bob can use the machine to produce output
β (but not α). In this case, the preferences of the firm are not fully substitutable: reduc-
ing the price of an input (say, the cost of hiring Ann) may lead to the firm choosing to
drop an output (β), violating part (i) of demand language full substitutability (Defini-
tion 2). In this section, however, we identify a rich class of preferences that are fully
substitutable despite the presence of capacity constraints.

Specifically, consider an intermediary with production capacity i who has access to
a number of inputs Y→i and requests Yi→. Each element (ϕ�pϕ) ∈ Y→i specifies the
characteristics of the particular input and the price at which this input is available to
i. Each element (ψ�pψ) ∈ Yi→ specifies the characteristics required by the contract’s
customer and the price that customer is willing to pay. Finally, i has a setM of machines;
each machinem ∈M can be used to prepare one input for one output.

For each input ϕ and machine m, there is a cost cϕ�m ∈ R ∪ {+∞} of preparing the
input to work with the machine (e.g., the cost of training a particular worker or the cost
of transporting iron ore from its source). For each machinem and each request ψ, there
is a cost cm�ψ ∈ R ∪ {+∞} of using this machine to produce the requested output (e.g.,
the cost of water required to produce a particular agricultural crop on a particular land
lot or the cost of transporting a batch of steel to its destination). Note that we allow
both costs to take the value +∞, to enable the possibility that a particular input is not
compatible with a particular machine or a particular machine is not compatible with a
particular request. The total cost of preparing input ϕ for request ψ using machine m
is thus cϕ�m + cm�ψ. The objective of i is to match some of the inputs in Y→i to some
of the requests in Yi→, via some of the machines, in a way that maximizes his profit,∑
(ϕ�m�ψ)∈μ(pψ −pϕ − cϕ�m − cm�ψ), where μ denotes the set of input–machine–request

triples that i selects.
Formally, define a matching, μ, as a set of triples (ϕ�m�ψ) such that

(i) ϕ is an element of �→i,

(ii) m is a machine available to i,

(iii) ψ is an element of �i→, and
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(iv) each ϕ belongs to at most one triple in μ, eachm belongs to at most one triple in
μ, and each ψ belongs to at most one triple in μ.

Slightly abusing notation, let the cost of matching μ, c(μ), be equal to the sum of the
costs of triples involved in μ, i.e., c(μ)= ∑

(ϕ�m�ψ)∈μ(cϕ�m + cm�ψ).
For a set of trades ⊆�i, let M() denote the set of matchings μ of elements of 

and machines available to i, such that every element of  belongs to exactly one triple
in μ. Then the valuation of i over sets of trades ⊆�i is given by

ui()=
{

−minμ∈M()

{
c(μ)

}
if M() �= ∅

−∞ if M()= ∅�

i.e., ui() is equal to the cost of the cheapest way of satisfying all requests in  using all
of the inputs in and some of the machines, if such a production plan is possible; and is
equal to −∞ otherwise. The utility function of i over feasible sets of contracts is induced
by valuation ui in the usual way.

Proposition 2. Any intermediary with production capacity has fully substitutable pref-
erences.

The intuition for the proof of Proposition 2 is as follows. First, if an intermediary
with production capacity i has only one machine, then his preferences are fully sub-
stitutable.23 Next, if i has multiple machines (i.e., the set M of machines has |M| > 1),
he can be, in essence, viewed as a “merger” of |M| single-machine agents. However,
we cannot “merge” the |M| single-machine agents directly, as we must account for the
constraints that a given input can be used by at most one machine (and, similarly, the
constraints that a given request can be satisfied by at most one machine). To address
these issues, we introduce a novel proof strategy: adding a layer of “input dummy” firms
and a layer of “request dummy” firms. Each input dummy firm enforces the constraint
that the input corresponding to that dummy firm is used by at most one machine within
the merged firm. Similarly, each request dummy firm enforces the constraint that the
request corresponding to that dummy firm is fulfilled by at most one machine. The
merger operation then combines the dummy firms with the single-machine firms. By
our Theorem 4, the preferences of our merged firm are fully substitutable, and it is clear
that the preferences of the merged firm reflect the valuation ui.

Note that while we use the “dummy firm layers and mergers” construction for the
specific purpose of proving the full substitutability of the preferences of an intermediary
with production capacity, this technique may be useful more generally for incorporating
various restrictions (say, incompatibility of some input trades) in agents’ preferences
while maintaining full substitutability, both in trading network and two-sided settings.

23To see this, suppose that i’s set of options as a buyer expands, i.e., the hypothesis of condition (i) of
CFS. Since i chooses at most one contract as a buyer (since he has only one machine), we must have that
either i chooses a new contract or i chooses the same contract he chose before (in both cases, all previously
rejected contracts are rejected); thus, the first part of condition (i) of CFS is satisfied. Moreover, since i
chooses his output contractψ so as to maximize pψ− cψ�m, i’s choice as a seller does not change, and so the
second part of condition (i) of CFS is satisfied. Similar arguments show that condition (ii) of CFS is satisfied.
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4.3 Discussion

The classes of preferences discussed in Sections 4.1 and 4.2 follow the tradition of con-
structing complex preferences out of elementary “building blocks” by combining and
modifying these blocks using substitutability-preserving operations. This tradition goes
back to Shapley (1962), who established the complementarity and substitutability prop-
erties of the optimal assignment problem, in which each “match” has a very simple pay-
off structure, but by optimizing over the space of possible overall assignments, we can
obtain a rich set of preferences. Sun and Yang (2006) introduced a closely related class of
preferences in two-sided markets in which agents on one side (firms) have preferences
over agents and objects on the other side (workers and machines) that are determined
by the productivity of each worker on each machine; Sun and Yang (2006) showed that
such preferences satisfy the gross substitutes and complements (GSC) condition, with
workers being substitutes for one another, machines being substitutes for one another,
and workers and machines being complements. The constructions of Shapley (1962)
and Sun and Yang (2006) are closely related to our construction of intermediary prefer-
ences in Section 4.1.24

In the standard two-sided matching context, Hatfield and Milgrom (2005) further
extended the construction of substitutable preferences to the class of endowed assign-
ment valuations, by starting with assignment valuations of Shapley (1962) and apply-
ing the endowment operation to them (i.e., by allowing the optimizing agent to initially
own some of the inputs; see Section 5.1 for more detail).25

 Ostrovsky and Paes Leme
(2015) showed that there exist substitutable preferences that cannot be represented
by endowed assignment valuations, and introduced the class of matroid-based valua-
tions, which is obtained by iteratively applying the endowment and merger operations
to weighted-matroid valuations. As every weighted-matroid valuation is substitutable
(Murota 1996, Murota and Shioura 1999, Fujishige and Yang 2003), every matroid-based
valuation is also substitutable; however, the converse is not true (Tran 2019).

Of course, by applying further transformations that preserve full substitutability, we
can generate even richer classes of fully substitutable preferences than those we dis-
cussed in Sections 4.1 and 4.2. In the next section, we discuss several types of such
transformations.

5. Transformations

In this section, we show that fully substitutable preferences can be transformed and
combined in several economically interesting ways that preserve full substitutability. We

24An important substantive difference between our intermediary preferences and the classes of prefer-
ences discussed by Shapley (1962) and Sun and Yang (2006) is that we incorporate the possibility that some
pairs of “inputs” and “outputs” are physically incompatible, so that they are never “matched” under any
vector of prices. By contrast, in the settings of Shapley (1962) and Sun and Yang (2006), for any given worker
and machine, there exists a vector of prices such under which that worker and machine will be matched.

25Alternatively, the construction of Hatfield and Milgrom (2005) can be viewed as starting with elemen-
tary singleton preferences and iteratively applying the operations of endowment and merger. Hatfield and
Milgrom (2005) showed that the endowment and merger operations preserve substitutability in their con-
text, and thus showed that all endowed assignment valuation preferences are substitutable.
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first consider the possibility that an agent is endowed with the right to execute any trades
in a given set and the possibility that an agent has an obligation to execute all trades in a
given set. We also examine mergers, in which the valuation function of the merged en-
tity is constructed as the convolution of the valuation functions of the merging parties.
Finally, we consider a form of limited liability, in which an agent may back out of some
agreed-upon trades in exchange for paying an exogenously-fixed penalty.

5.1 Trade endowments and obligations

Suppose an agent i is endowed with the right (but not the obligation) to execute trades
in the set �⊆�i at prices p�. Let

û
(��p�)
i (�)≡ max

⊆�

{
ui(�∪)+

∑
ξ∈i→

pξ −
∑
ξ∈→i

pξ

}

be a valuation over trades in � \ �; û(��p�)i represents agent i having a valuation over
trades in� \� consistent with ui while being endowed with the option of executing any
trades in the set �⊆�i at prices p�.

Theorem 2. If the initial preferences of agent i are fully substitutable, then the prefer-
ences induced by the valuation function û(��p�)i are fully substitutable for any�⊆�i and
p� ∈R�.

Intuitively, when we endow agent iwith access to the trades in� at prices p�, we are
effectively restricting (a) the set of prices that may change and (b) the set of trades that
are required to be substitutes in the demand-language definition of full substitutability
(Definition 2). Naturally, this process cannot create complementarities among trades in
� \�, given that under ui, these trades already are substitutes for each other and for the
trades in �. Hence, û(��p�)i induces fully substitutable preferences over trades in � \�.

Apart from endowments, agents may have obligations, that is, an agent i may be
obliged to execute trades in some set �⊆�i at fixed prices p�; we now show that if an
agent’s preferences are initially fully substitutable, then they remain so when such an
obligation arises. Suppose agent i is obliged to execute trades in � ⊆ �i at prices p�
(with � technologically feasible in the sense that ui(�) �= −∞). Let

ũ
(��p�)
i (�)≡ ui(�∪�)+

∑
ϕ∈�i→

pϕ −
∑
ϕ∈�→i

pϕ�

where ũ(��p�)i represents agent i having a valuation over trades in � \� consistent with
ui while being obliged to execute all trades in the set �⊆�i at prices p�.

Theorem 3. If the initial preferences of agent i are fully substitutable, then the prefer-
ences induced by the valuation function ũ(��p�)i are fully substitutable for any�⊆�i and
p� ∈R� such that ui(�) �= −∞.

The idea of the proof of Theorem 3 is to note that the demand correspondence of
agent i with valuation ũ(��p�)i does not depend on the obligation prices p�, as changing
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p� simply shifts the agent’s utility function by a fixed amount. Thus, we can assume that
the trades that the agent is obliged to buy have negative and very large (in absolute mag-
nitude) prices, while the trades that the agent is obliged to sell have positive and very
large prices. Under those assumptions, “obligations” become “endowments” (because
the agent would voluntarily want to execute all of these trades), and thus Theorem 3
follows from Theorem 2.

Combining Theorems 2 and 3, we see that if the preferences of agent i are fully sub-
stitutable, then they remain fully substitutable when i is endowed with some trades and
obliged to execute others (assuming that the obligation is technologically feasible).

5.2 Mergers

The second transformation we consider is the case when several agents merge. Given a
set of agents J, we denote the set of trades that involve only agents in J as

�J ≡ {ω ∈� : {b(ω)� s(ω)} ⊆ J}�
We let the convolution of the valuation functions {uj}j∈J be defined as

uJ(�)≡ max
�⊆�J

{∑
j∈J
uj(�∪�)

}
(1)

for sets of trades �⊆� \�J . The convolution uJ represents a “merger” of the agents in
J, as it treats the agents in J as able to execute any within-J trades costlessly.

Theorem 4. For any set of agents J ⊆ I, if the preferences of each j ∈ J are fully sub-
stitutable, then the preferences induced by the convolution uJ (defined in (1)) are fully
substitutable.26

While Theorem 4 is of independent interest, we also use it in the proof of Proposi-
tion 2.

We note also that substitutability is not preserved following dissolution/de-mergers.
For example, if agents i and j only trade with each other, then the preferences induced
by the convolution valuation u{i�j} are trivially fully substitutable, even if the preferences
of i and j are not.

Substitutability is also not preserved when merging trades. To see this, consider a
simple economy with agents i and j and a set of trades � consisting of χ, ϕ, ψ, and ω.
Agent i is the buyer in all of the trades, and agent j is the seller. Agent i’s valuation is

ui(�)=

⎧⎪⎪⎨
⎪⎪⎩

2 |�i| ≥ 2

1 |�i| = 1

0 otherwise.

26We provide a direct proof of this result in Appendix B; however, it also follows as a consequence of the
relationship between full substitutability and M�-concavity (which we describe in Section 6.4) and the fact
that the supremal convolution of two M�-concave functions is M�-concave (Murota 2003, Theorem 6.13).
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The preferences of i are fully substitutable. Now consider merging the trades χ and ϕ
into a single trade ξ. The resulting valuation function of agent i over the subsets of �̆≡
(� \ {χ�ϕ})∪ {ξ} is given by

ŭi(�)=

⎧⎪⎪⎨
⎪⎪⎩

2 |�i| ≥ 2 or ξ ∈�
1 |�i| = 1 and ξ /∈�
0 otherwise.

Valuation function ŭi is not fully substitutable. To see this, note that for price vector
p= (pξ�pψ�pω)= (1�7�0�8�0�8), the unique optimal demand of agent i is {ψ�ω}, but for
price vector p′ = (p′

ξ�p
′
ψ�p

′
ω) = (1�7�1�0�8), the unique optimal demand of agent i is

{ξ}. That is, under price vector p′, agent i no longer demands the trade ω, even though
its price remains unchanged while the price of ψ increases and the price of ξ remains
unchanged.

5.3 Limited liability

The final transformation we consider is “limited liability.” Suppose that after agreeing
to a trade, an agent is allowed to renege on that trade in exchange for paying a fixed
penalty. We show that this transformation preserves substitutability. In addition to be-
ing economically interesting, this result is also useful technically; indeed, it enables us
to transform unbounded utility functions into bounded ones while preserving substi-
tutability, which in turn simplifies the analysis in a number of settings (see, e.g., the
proof of Theorem 1 of Hatfield et al. (2013)).

Formally, consider a fully substitutable valuation function ui for agent i. Take an
arbitrary set of trades � ⊆ �i, and for every trade ϕ ∈ �, pick the penalty �ϕ ∈ R for
reneging on trade ϕ. (For mathematical completeness, we allow �ϕ to be negative.)

Define the modified valuation function ǔ(����)i as

ǔ
(����)
i (�)≡ max

⊆�∩�

{
ui(� \)−

∑
ϕ∈

�ϕ

}
� (2)

That is, under valuation ǔ(����)i , agent i can “buy out” some of the trades to which he
has committed (provided these trades are in the set � of trades the agent may renege
on) and pay the corresponding penalty for each trade he buys out.

Theorem 5. If the initial preference of agent i are fully substitutable, then the preferences
induced by the valuation function with limited liability ǔ(����)i are fully substitutable for
any �⊆�i and �� ∈R�.

A common assumption in the earlier literature on two-sided matching and exchange
economies (see, e.g., Kelso and Crawford 1982 and Gul and Stacchetti 1999) is that buy-
ers’ valuation functions are monotonic.27 Intuitively, monotonicity corresponds to the

27In the two-sided settings of Kelso and Crawford (1982) and Gul and Stacchetti (1999), buyers’ valuation
functions are required to be weakly increasing with respect to the set of workers/objects obtained; that is,
monotonicity of the valuation function ui requires that, for all  and � such that  ⊆� ⊆ �→i, we have
that ui(�)≥ ui().
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special case of our setting in which an agent has free disposal, in the sense that he can
renege on any trade as a buyer at no cost. More formally, if ui is fully substitutable, then
Theorem 5 implies that we can obtain a fully substitutable and monotonic valuation
function ǔ(����)i by allowing the agent to renege on any trade in ϕ ∈ �i at a per-trade
cost of �ϕ = 0.

6. Properties equivalent to full substitutability

In this section, we discuss several properties of valuation functions that turn out to be
equivalent to full substitutability. While these results are of independent interest, some
of them are also useful in applications. For example: The submodularity equivalence
we prove in Section 6.1 is used in our proof that substitutability is preserved under trade
endowments (Theorem 2). The single improvement property, introduced in Section 6.2,
is useful for efficiently computing the choices of agents with fully substitutable prefer-
ences, as it implies that local search for an optimal bundle eventually reaches a global
optimum (Paes Leme 2017). The object-language formulation of full substitutability
we develop in Section 6.3 is used in showing that substitutability implies monotone–
substitutability, which implies the Laws of Aggregate Supply and Demand (Theorem 10).

6.1 Submodularity of the indirect utility function

A classical approach (see, e.g., the work of Gul and Stacchetti 1999 and Ausubel and Mil-
grom 2002) relates substitutability of the utility function to submodularity of the indirect
utility function. In particular, every (gross) substitutable utility function corresponds to
a submodular indirect utility function and vice versa; here, we generalize this relation-
ship to our setting using an argument that avoids the monotonicity conditions that Gul
and Stacchetti (1999) and Sun and Yang (2009) imposed.

For price vectors p� p̄ ∈ R�, let the join of p and p̄, denoted p∨ p̄, be the pointwise
maximum ofp and p̄; let the meet ofp and p̄, denotedp∧p̄, be the pointwise minimum.

Definition 4. The indirect utility function of agent i,

Vi(p)≡ max
�⊆�i

{
Ui

([�;p])}�
is submodular if, for all price vectors p� p̄ ∈ R�, we have that

Vi(p∧ p̄)+ Vi(p∨ p̄)≤ Vi(p)+ Vi(p̄)�

Just as in two-sided frameworks, full substitutability corresponds to submodularity
of the indirect utility function.

Theorem 6. The preferences of an agent are fully substitutable if and only if they induce
a submodular indirect utility function.
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6.2 The single improvement property

Gul and Stacchetti (1999) first observed (in the setting of exchange economies) that sub-
stitutability is equivalent to the single improvement property—an agent’s preferences are
substitutable if and only if, when an agent does not have an optimal bundle, he can make
himself better off by adding a single item, dropping a single item, or doing both. Sun
and Yang (2009) extended Gul and Stacchetti’s equivalence result to their setting. Bald-
win and Klemperer (2019) showed that in their setting the single improvement property
is equivalent to requiring that agents have complete preferences.

Definition 5. The preferences of agent i have the single improvement property if for
any price vector p and set of trades � /∈Di(p) such that ui(�) �= −∞, there exists a set
of trades� such that

(i) Ui([�;p]) < Ui([�;p]),
(ii) there exists at most one trade ω such that ei�ω(�) < ei�ω(�), and

(iii) there exists at most one trade ω such that ei�ω(�) > ei�ω(�).28

The single improvement property in our setting says that when an agent holds a
suboptimal bundle of trades�, that agent can be made better off by either:

• obtaining one item not currently held (either by making a new purchase, i.e.,
adding a trade in �→i \�, or by canceling a sale, i.e., removing a trade in�i→),

• relinquishing one item currently held (either by canceling a purchase, i.e., remov-
ing a trade in�→i, or by making a new sale, i.e., adding a trade in �i→ \�), or

• both obtaining one item not currently held and relinquishing one item currently
held.

For instance, an agent may buy one more input and commit to provide one additional
output as a “single improvement.”

Theorem 7. The preferences of an agent are fully substitutable if and only if they have
the single improvement property.

6.3 Object-language substitutability

An alternative way to think about trades in our setting is to consider each trade as repre-
senting the transfer of an underlying object. Under this interpretation, an agent’s pref-
erences over trades are fully substitutable if and only if that agent’s preferences over ob-
jects have the standard Kelso and Crawford (1982) property of gross substitutability.

Formally, we consider each trade ω ∈ � as transferring an underlying object from
s(ω) to b(ω); we denote this underlying object as o(ω). We call the set of all underlying
objects�. Hence, after executing the set of trades�⊆�i, agent i is left with both (i) the

28Recall that the definition of the generalized indicator function ei is given in Section 3.3.
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set of objects corresponding to the trades in � in which i is a buyer and (ii) the set of
objects corresponding to the trades in �i \� in which i is a seller. Formally, we define
the set of objects held by agent i after executing the set of trades� as

oi(�)= {
o(ω) :ω ∈�→i

} ∪ {
o(ω) :ω ∈�i→ \�i→

}
�

Conversely, we define the trade associated with an object ω as t(ω); note that
t(o(ω)) = ω. For a given set of objects � ⊆�i ≡ {ω ∈� : i ∈ {b(t(ω))� s(t(ω))}, we also
define the set of trades executed by i as

ti(�)= {
ω ∈�→i : o(ω) ∈�} ∪ {

ω ∈�i→ : o(ω) ∈�i \�
}
�

For a partition of objects {�i}i∈I , the set of trades that implements this partition is given
by ⋃

i∈I
ti
(
�i

)
�

For a set of objects�, we let

ui(�)≡ ui
(
ti(�)

) = ui
([
ti(�)

]
→i

∪ [
�i \ ti(�)

]
i→

)
�

Using object language, we can also reformulate indicator-language full substitutabil-
ity (Definition 3) into object-language full substitutability.

Definition 6. The preferences of agent i are object-language fully substitutable (OFS) if
for all price vectors p�p′ ∈ R� such that |Di(p)| = |Di(p′)| = 1 and p≤ p′, for the unique
� ∈Di(p) and�′ ∈Di(p′), ifω ∈ oi(�), thenω ∈ oi(�

′) for eachω ∈�i such thatpt(ω) =
p′
t(ω).

Under object-language full substitutability, an increase in the price of object ψ can-
not decrease the agent’s demand for any object ω �= ψ. That is, the agent’s preferences
over objects are gross substitutable, in the sense of Kelso and Crawford (1982).

We can now interpret the indicator function ei�ψ(�) as encoding whether the object
ψ= o(ψ) is transferred under�:

• if ψ ∈�→i, then ψ ∈ oi(�) and ei�ψ(�)= 1, i.e., i newly obtains the object associ-
ated with ψ;

• if ψ ∈�i→, then ψ /∈ oi(�) and ei�ψ(�) = −1, i.e., i gives up the object associated
with ψ;

• finally, if ψ /∈ �, then ei�ψ(�) = 0, i.e., i neither newly obtains nor gives up the
object associated with ψ.

Moreover, object-language full substitutability is useful in our proof that fully substi-
tutable preferences satisfy the Laws of Aggregate Supply and Demand (under quasilinear
utility).

We can reformulate the definition of the single improvement property in terms of
objects.
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Definition 5′ (Equivalent to Definition 5). The preferences of agent i have the single
improvement property if for any price vector p and set of trades � /∈ Di(p) such that
ui(�) �= −∞, there exists a set of trades � such that

(i) Ui([�;p]) < Ui([�;p]),
(ii) there exists at most one object ϕ ∈ oi(�) \ oi(�), and

(iii) there exists at most one object ψ ∈ oi(�) \ oi(�).
Using object language, we get a definition of the single improvement property that

exactly matches the intuition provided for Definition 5. The single improvement prop-
erty says that when an agent holds a suboptimal bundle of trades �, that agent can be
made better off by:

• obtaining one object ϕ not currently held, i.e., ϕ /∈ oi(�),

• relinquishing one object ψ currently held, i.e., ψ ∈ oi(�), or

• both newly obtaining one object and relinquishing one object.

When substitutability is expressed in terms of preferences over trades, it is neces-
sary to treat relationships between “same-side” and “cross-side” contracts differently.
Both Sun and Yang (2006) and Ostrovsky (2008) thus introduced a concept of cross-side
complementarity, which requires that agents treat buy-side contracts as complemen-
tary to sell-side contracts (as in our Definitions 1 and 2), which might suggest that there
is something fundamentally different between how contracts on one side are interde-
pendent with each other versus how contracts on different sides are interdependent.
The representation of preferences in terms of object-language substitutability uncov-
ers that cross-side complementarity is not really a complementarity condition per se:
rather, it corresponds to an underlying substitutability condition over objects, in the
sense that trades are cross-side complements if upstream trades transfer in objects that
“substitute” for objects transferred out through downstream trades (and vice versa).

The formalization of substitutability in terms of preferences over objects (Defini-
tion 6) thus provides a simple and compact interpretation of full substitutability that
does not require treating two sides differently: it simply says that when an agent’s object
opportunity set shrinks, the agent does not reduce demand for any object that remains
in his opportunity set.

The preceding observations make the following result immediate.

Theorem 8. The preferences of an agent are fully substitutable if and only if they are
object-language fully substitutable.

6.4 M�-concavity over objects

Fujishige and Yang (2003) showed that gross substitutability in the Kelso and Crawford
(1982) model is equivalent to a classical condition from discrete optimization theory:
M�-concavity (Murota 2003; see also Reijnierse et al. 2002). In our object-language no-
tation, the condition can be stated as follows.
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Definition 7. The valuation ui is M�-concave over objects if for all ��� ∈�i, for any
ψ ∈�, we have

ui(�)+ui(�)≤ max
{
ui

(
�\{ψ})+ui(�∪{ψ})�max

ϕ∈�
{
ui

(
�∪{ϕ}\{ψ})+ui(�∪{ψ}\{ϕ})}}�

A valuation function is M�-concave if, for any sets of objects � and �, the sum of
ui(�) and ui(�) is weakly increased when either we move a given objectψ from� to�
or we swap ψ for some other object ϕ ∈�.

Theorem 9. The preferences of an agent are fully substitutable if and only if the associ-
ated valuation function is M�-concave over objects.

Theorem 9 follows from Theorem 7 of Murota and Tamura (2003), which shows that
M�-concavity is equivalent to the single improvement property—and which in turn, by
our Theorem 7, implies the equivalence of full substitutability and M�-concavity.

7. Monotone–substitutability and the Laws of Aggregate Supply and

Demand

Hatfield and Milgrom (2005) showed that in two-sided matching markets with transfers
and quasilinear utility, all fully substitutable preferences satisfy a monotonicity condi-
tion called the Law of Aggregate Demand.29 The analogues of this condition for the cur-
rent setting are the Laws of Aggregate Supply and Demand for trading networks (Hatfield
and Kominers 2012).

Definition 8. The preferences of agent i satisfy the Law of Aggregate Demand if for all
finite sets of contracts Y�Z ⊆ Xi such that Yi→ = Zi→ and Y→i ⊆ Z→i, for every Y ∗ ∈
Ci(Y), there exists Z∗ ∈ Ci(Z) such that |Z∗

→i| − |Z∗
i→| ≥ |Y ∗

→i| − |Y ∗
i→|.

The preferences of agent i satisfy the Law of Aggregate Supply if for all finite sets of
contracts Y and Z such that Yi→ ⊆ Zi→ and Y→i = Z→i, for every Y ∗ ∈ Ci(Y), there
exists Z∗ ∈ Ci(Z) such that |Z∗

i→| − |Z∗
→i| ≥ |Y ∗

i→| − |Y ∗
→i|.

Intuitively, the choice correspondence Ci satisfies the Law of Aggregate Demand if,
whenever the set of options available to i as a buyer expands, the net demand (i.e., the
difference between the number of buy-side contracts chosen and the number of sell-
side contracts chosen) increases. Similarly, the choice correspondence Ci satisfies the
Law of Aggregate Supply if, whenever the set of options available to i as a seller expands,
the net supply (i.e., the difference between the number of sell-side contracts chosen and
the number of buy-side contracts chosen) increases. The conditions stated in Defini-
tion 8 extend the Hatfield and Milgrom (2005) Law of Aggregate Demand (see also Alkan
and Gale 2003, Hatfield and Kominers 2012) to the current setting, in which each agent
can be a buyer in some trades and a seller in others.

29In the context of two-sided matching with contracts, the Law of Aggregate Demand is essential for
“rural hospitals” and strategy-proofness results (see Hatfield and Milgrom 2005 and Hatfield and Kominers
2017).
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One subtle technical issue arises because choice correspondences are not necessar-
ily single-valued in our setting. Under fully substitutable preferences, for all finite sets of
contracts Y�Z ⊆Xi such that Yi→ = Zi→ and Y→i ⊆ Z→i, if Y ∗ ∈ Ci(Y), then there ex-
ists a Z∗ ∈ Ci(Z) such that (Y→i \Y ∗

→i)⊆ (Z→i \Z∗
→i) and Y ∗

i→ ⊆Z∗
i→ (see Appendix A).

Meanwhile, when the Law of Aggregate Demand is satisfied, for all finite sets of con-
tracts Y�Z ⊆Xi such that Yi→ = Zi→ and Y→i ⊆ Z→i, if Y ∗ ∈ Ci(Y), then there exists a
Z∗ ∈ Ci(Z) such that |Z∗

→i| − |Z∗
i→| ≥ |Y ∗

→i| − |Y ∗
i→|. However, in principle, it may be the

case that there is noZ∗ that simultaneously satisfies the conditions for full substitutabil-
ity and the Law of Aggregate Demand. Yet in some applications, it is important to have
a single Z∗ that simultaneously satisfies both conditions (see, e.g., Hatfield et al. 2018).
Thus we introduce the following stronger condition, called monotone–substitutability.

Definition 9. The preferences of agent i are monotone–substitutable if both:

(i) for all finite sets of contracts Y�Z ⊆Xi such that Yi→ = Zi→ and Y→i ⊆ Z→i, for
every Y ∗ ∈ Ci(Y), there exists Z∗ ∈ Ci(Z) such that (Y→i \ Y ∗

→i) ⊆ (Z→i \ Z∗
→i),

Y ∗
i→ ⊆Z∗

i→, and |Z∗
→i| − |Z∗

i→| ≥ |Y ∗
→i| − |Y ∗

i→|; and

(ii) for all finite sets of contracts Y�Z ⊆Xi such that Y→i = Z→i and Yi→ ⊆ Zi→, for
every Y ∗ ∈ Ci(Y), there exists Z∗ ∈ Ci(Z) such that (Yi→ \ Y ∗

i→) ⊆ (Zi→ \ Z∗
i→),

Y ∗
→i ⊆Z∗

→i, and |Z∗
i→| − |Z∗

→i| ≥ |Y ∗
i→| − |Y ∗

→i|.

In our setting, full substitutability implies monotone–substitutability, which in turn
implies the Laws of Aggregate Supply and Demand.30

Theorem 10. If the preferences of agent i are fully substitutable, then they are monotone–
substitutable.

Corollary 1. If the preferences of agent i are fully substitutable, then they satisfy the
Laws of Aggregate Supply and Demand.

Corollary 1 is an analogue of Theorem 7 of Hatfield and Milgrom (2005) for our set-
ting.

8. Conclusion

Various forms of substitutability are essential for establishing the existence of equilibria
and other useful properties in diverse settings such as matching, auctions, and exchange
economies with indivisible goods. We extended earlier models’ canonical definitions of
substitutability to a setting in which an agent can be both a buyer in some transactions
and a seller in others, and showed that all these definitions are equivalent. We intro-
duced a new class of substitutable preferences that allows us to model intermediaries

30Note that this result relies on our assumption that preferences are quasilinear; meanwhile, in non-
quasilinear settings, it is easy to construct preferences that are fully substitutable but do not satisfy the Law
of Aggregate Demand (see, e.g., Hatfield and Milgrom 2005, p. 925).
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with production capacity. We proved that substitutability is preserved under econom-

ically important transformations such as trade endowments and obligations, mergers,

and limited liability. We also showed that substitutability corresponds to submodular-

ity of the indirect utility function, the single improvement property, gross substitutabil-

ity under a suitable transformation (object-language full substitutability), and M�-

concavity. Finally, we showed that substitutability implies monotone–substitutability,

which in turn implies the Laws of Aggregate Supply and Demand. All of our results ex-

plicitly incorporate economically important features that were not fully addressed in

prior work, such as indifferences, non-monotonicities, and unbounded utility functions.

In the current paper, we focused on the full substitutability of the preferences of an

individual agent. In related work, we have explored the properties of economies with

multiple agents whose preferences are fully substitutable. That work shows that when

all agents’ preferences are fully substitutable, outcomes that are stable (in the sense of

matching theory) exist for any underlying network structure (Hatfield et al. 2013, Theo-

rems 1 and 5). Furthermore, full substitutability of preferences guarantees that the set

of stable outcomes is essentially equivalent to the set of competitive equilibria with per-

sonalized prices (Hatfield et al. 2013, Theorems 5 and 6) and to the set of chain stable

outcomes (Hatfield et al. 2018, Theorem 1 and Corollary 1), and that all stable outcomes

are in the core and are efficient (Hatfield et al. 2013, Theorem 9). Full substitutability

also delineates a maximal domain for the existence of equilibria (Hatfield et al. 2013;

see also Gul and Stacchetti 1999 and Yang 2017): for any domain of preferences strictly

larger than that of full substitutability, the existence of stable outcomes and competitive

equilibria cannot be guaranteed.

Appendix A: Definitions of full substitutability that consider

multi-valued choices and demands

In this Appendix, we introduce six alternative definitions of full substitutability that ex-

plicitly deal with indifferences in preferences. Definitions A.1 and A.2 are analogues

of choice-language full substitutability (Definition 1); Definitions A.3 and A.4 are ana-

logues of demand-language full substitutability (Definition 2); and Definitions A.5 and

A.6 are analogues of indicator-language full substitutability (Definition 3). In Ap-

pendix A.4, we show that Definitions A.1–A.6 are all equivalent to each other and to CFS,

DFS, and IFS.

In contrast to Definitions 1, 2, and 3, which consider single-valued choices and de-

mands, Definitions A.1–A.6 explicitly consider multi-valued correspondences and deal

directly with indifferences. By explicitly accounting for indifferences and multi-valued

correspondences, we directly generalize the original gross substitutability condition of

Kelso and Crawford (1982) to our setting. Moreover, the conditions that explicitly ac-

count for indifferences turn out to be useful for proving various results on trading net-

works.
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A.1 Choice-language full substitutability

Our next two definitions are analogues of Definition 1, explicitly considering indiffer-
ences in preferences. The first one states what happens when an agent’s set of options
expands, and the second one states what happens when the set of options shrinks.

Definition A.1. The preferences of agent i are choice-language expansion fully substi-
tutable (CEFS) if both:

(i) for all finite sets of contracts Y�Z ⊆ X such that Yi→ = Zi→ and Y→i ⊆ Z→i, for
every Y ∗ ∈ Ci(Y), there existsZ∗ ∈ Ci(Z) such that (Y→i \Y ∗

→i)⊆ (Z→i \Z∗
→i) and

Y ∗
i→ ⊆Z∗

i→; and

(ii) for all finite sets of contracts Y�Z ⊆ X such that Y→i = Z→i and Yi→ ⊆ Zi→, for
every Y ∗ ∈ Ci(Y), there existsZ∗ ∈ Ci(Z) such that (Yi→ \Y ∗

i→)⊆ (Zi→ \Z∗
i→) and

Y ∗
→i ⊆Z∗

→i.

Definition A.2. The preferences of agent i are choice-language contraction fully sub-
stitutable (CCFS) if both:

(i) for all finite sets of contracts Y�Z ⊆ X such that Yi→ = Zi→ and Y→i ⊆ Z→i, for
everyZ∗ ∈ Ci(Z), there exists Y ∗ ∈ Ci(Y) such that (Y→i \Y ∗

→i)⊆ (Z→i \Z∗
→i) and

Y ∗
i→ ⊆Z∗

i→; and

(ii) for all finite sets of contracts Y�Z ⊆ X such that Y→i = Z→i and Yi→ ⊆ Zi→, for
everyZ∗ ∈ Ci(Z), there exists Y ∗ ∈ Ci(Y) such that (Yi→ \Y ∗

i→)⊆ (Zi→ \Z∗
i→) and

Y ∗
→i ⊆Z∗

→i.

Note that we use Y as the “starting set” in CEFS and Z as the starting set in CCFS to
make the two definitions more easily comparable.

Furthermore, note that in case (i) of CEFS and CCFS, requiringY→i \Y ∗
→i ⊆Z→i\Z∗

→i

(i.e., that every buy-side contract not chosen when the smaller set Y is available is still
not chosen when the larger set Z is available) is equivalent to requiring that Z∗ ∩Y→i ⊆
Y ∗ (i.e., that every buy-side contract chosen when the larger set Z is available is still
chosen if available when the smaller set Y is available). Similarly, in case (ii), requiring
Yi→ \Y ∗

i→ ⊆Zi→ \Z∗
i→ is equivalent to requiring that Z∗ ∩Yi→ ⊆ Y ∗.

It is immediate that both Definitions A.1 and A.2 imply Definition 1, as all three defi-
nitions impose the same conditions when the choice correspondence is univalent. How-
ever, as Theorem A.1 demonstrates, imposing the conditions of Definition 1 to cases in
which the choice correspondence is univalent is sufficient to recover the stronger defi-
nitions discussed here.

A.2 Demand-language full substitutability

Our next two substitutability concepts are analogues of Definition 2.

Definition A.3. The preferences of agent i are demand-language expansion fully sub-
stitutable (DEFS) if both:
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(i) for all price vectors p�p′ ∈ R� such that pω = p′
ω for all ω ∈ �i→ and pω ≥ p′

ω

for all ω ∈ �→i, for every � ∈ Di(p) there exists �′ ∈ Di(p′) such that we have
{ω ∈�′

→i : pω = p′
ω} ⊆�→i and�i→ ⊆�′

i→; and

(ii) for all price vectors p�p′ ∈ R� such that pω = p′
ω for all ω ∈ �→i and pω ≤ p′

ω

for all ω ∈ �i→, for every � ∈ Di(p) there exists �′ ∈ Di(p′) such that we have
{ω ∈�′

i→ : pω = p′
ω} ⊆�i→ and�→i ⊆�′

→i.

Definition A.4. The preferences of agent i are demand-language contraction fully sub-
stitutable (DCFS) if both:

(i) for all price vectors p�p′ ∈ R� such that pω = p′
ω for all ω ∈ �i→ and pω ≥ p′

ω

for all ω ∈ �→i, for every �′ ∈ Di(p′) there exists � ∈ Di(p) such that we have
{ω ∈�′

→i : pω = p′
ω} ⊆�→i and�i→ ⊆�′

i→; and

(ii) for all price vectors p�p′ ∈ R� such that pω = p′
ω for all ω ∈ �→i and pω ≤ p′

ω

for all ω ∈ �i→, for every �′ ∈ Di(p′) there exists � ∈ Di(p) such that we have
{ω ∈�′

i→ : pω = p′
ω} ⊆�i→ and�→i ⊆�′

→i.

Note that we use p as the “starting price vector” in DEFS and p′ as the starting price
vector in DCFS. Also, in case (i) of DEFS and DCFS, requiring {ω ∈�′

→i : pω = p′
ω} ⊆�→i

(i.e., any trade demanded at prices p′ is still demanded when the prices of other trades
rise) is equivalent to requiring that {ω ∈ (�→i \�) : pω = p′

ω} ⊆�→i \�′ (i.e., any trade
not demanded at prices p is still not demanded when the prices of other trades fall).
Similarly, in case (ii), requiring {ω ∈ �′

i→ : pω = p′
ω} ⊆ �i→ is equivalent to requiring

that {ω ∈ (�i→ \�) : pω = p′
ω} ⊆�i→ \�′.

It is immediate that both Definitions A.3 and A.4 imply Definition 2, as all three def-
initions impose the same conditions when the demand correspondence is univalent.
However, as Theorem A.1 demonstrates, imposing the conditions of Definition 2 to cases
in which the demand correspondence is univalent is sufficient to recover the stronger
definitions discussed here.

As we mentioned in footnote 13, DCFS corresponds directly to the gross substitutes
and complements condition (GSC) of Sun and Yang (2006). That said, there is a subtlety
in interpreting the relationship between the Sun and Yang (2006) model and ours. In
the Sun and Yang (2006) model, each agent is treated as buying goods from two separate
sets; goods are substitutes within each set, but complements across the two sets. As
each agent in the Sun and Yang (2006) model is just a buyer, all goods are taken to have
positive prices. In our framework, meanwhile, each agent is treated as the buyer of some
trades (upstream) and the seller of others (downstream); we thus use the convention
that prices for trades bought are positive, while prices for trades sold are negative. As
both in our setting and in that of Sun and Yang (2006) prices themselves are allowed to
be either positive or negative, the difference between the sign convention is immaterial:
the trades available for sale and purchase in our framework correspond to the two sets of
goods in the Sun and Yang (2006) model. Even so, there is a difference in interpretation
between the two models: under the convention Sun and Yang (2006) have chosen, we
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think of the agents as buying all of the goods, whereas in our model, we think of agents
as more akin to intermediaries who convert inputs into outputs. (For a formal statement
of an embedding of the Sun and Yang 2006 model into our trading network framework,
see Hatfield et al. 2013, Section IV.B.)

A.3 Indicator-language full substitutability

Our next two definitions are analogues of Definition 3.

Definition A.5. The preferences of agent i are indicator-language increasing-price
fully substitutable (IIFS) if for all price vectors p�p′ ∈ R� such that p ≤ p′, for every
� ∈ Di(p) there exists �′ ∈ Di(p′), such that ei�ω(�) ≤ ei�ω(�

′) for each ω ∈ �i such
that pω = p′

ω.

Definition A.6. The preferences of agent i are indicator-language decreasing-price
fully substitutable (IDFS) if for all price vectors p�p′ ∈ R� such that p ≤ p′, for every
�′ ∈Di(p′) there exists� ∈Di(p), such that ei�ω(�)≤ ei�ω(�′) for eachω ∈�i such that
pω = p′

ω.

Definition A.5 considers what happens as prices rise from p to p′, requiring that a
trade whose price does not change that is bought (respectively, not sold) by i under p is
still bought (not sold) by i under p′. By contrast, Definition A.6 considers what happens
as prices fall from p′ to p, requiring that a trade whose price does not change that is sold
(respectively, not bought) by i under p′ is still sold (not bought) by i under p.

It is immediate that both Definitions A.5 and A.6 imply Definition 3, as all three def-
initions impose the same conditions when the demand correspondence is univalent.
However, as Theorem A.1 demonstrates, imposing the conditions of Definition 3 to cases
in which the demand correspondence is univalent is sufficient to recover the stronger
definitions discussed here.

A.4 Equivalence result

We now show that our three main substitutability concepts and the six generalizations
introduced in this appendix are all equivalent. In particular, Theorem A.1 implies Theo-
rem 1.

Theorem A.1. The CFS, DFS, IFS, CEFS, CCFS, DEFS, DCFS, IIFS, and IDFS conditions
are all equivalent.

Proof. We assume throughout that � = �i.31 To prove Theorem A.1, we prove seven
lemmata; we first show that all three demand-language concepts of full substitutability
are equivalent.

31This assumption is without loss of generality, as all of the analysis here considers only the sets of trades
demanded by i and, for any price vectors p and p̄ such that p�i = p̄�i , we have thatDi(p)=Di(p̄).
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Lemma 1. The DFS, DEFS, and DCFS conditions are all equivalent.

Proof. It is immediate that DEFS and DCFS each imply DFS. To complete the proof,

we show that DFS implies DEFS and that DFS implies DCFS.

DFS ⇒ DEFS. We first show that part (i) of DFS implies part (i) of DEFS. Consider two

price vectors p and p′ such that pω = p′
ω for all ω ∈ �i→ and pω ≥ p′

ω for all ω ∈ �→i,

and let �̃≡ {ω ∈� : pω >p′
ω}; note that �̃⊆�→i. Fix an arbitrary� ∈Di(p); we need to

show that there exists a set�′ ∈Di(p′) that satisfies the requirements of part (i) of DEFS.

Let q be given by

qω =
{
pω − ε ω ∈�→i orω ∈ [� \�]i→
pω + ε ω ∈ [� \�]→i orω ∈�i→

for some sufficiently small ε > 0. Let q′ be given by

q′
ω =

{
p′
ω ω ∈ �̃
qω ω ∈� \ �̃

=

⎧⎪⎪⎨
⎪⎪⎩
p′
ω ω ∈ �̃
pω − ε ω ∈�→i \ �̃ orω ∈ [� \�]i→ \ �̃
pω + ε ω ∈ [� \�]→i \ �̃ orω ∈�i→ \ �̃

=

⎧⎪⎪⎨
⎪⎪⎩
p′
ω ω ∈ �̃
p′
ω − ε ω ∈�→i \ �̃ orω ∈ [� \�]i→ \ �̃
p′
ω + ε ω ∈ [� \�]→i \ �̃ orω ∈�i→ \ �̃�

and let�′ ∈Di(q′). Let q̄′ be given by

q̄′
ω =

{
q′
ω − δ ω ∈�′

→i orω ∈ [
� \�′]

i→
q′
ω + δ ω ∈ [

� \�′]
→i

orω ∈�′
i→

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p′
ω − δ ω ∈�′

→i ∩ �̃ orω ∈ [
� \�′]

i→ ∩ �̃
p′
ω + δ ω ∈ [

� \�′]
→i

∩ �̃ orω ∈�′
i→ ∩ �̃

p′
ω − ε− δ ω ∈ [

�′ ∩�]
→i

\ �̃ orω ∈ [
� \ (

�′ ∪�)]
i→ \ �̃

p′
ω − ε+ δ ω ∈ [

� \�′]
→i

\ �̃ orω ∈ [
�′ \�]

i→ \ �̃
p′
ω + ε− δ ω ∈ [

�′ \�]
→i

\ �̃ orω ∈ [
� \�′]

i→ \ �̃
p′
ω + ε+ δ ω ∈ [

� \ (
�′ ∪�)]

→i
\ �̃ orω ∈ [

�′ ∩�]
i→ \ �̃

for some sufficiently small δ < ε. Finally, let q̄ be given by

q̄ω =
{
qω ω ∈ �̃
q̄′
ω ω ∈� \ �̃
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pω − ε ω ∈�→i ∩ �̃ orω ∈ [� \�]i→ ∩ �̃
pω + ε ω ∈ [� \�]→i ∩ �̃ orω ∈�i→ ∩ �̃
pω − ε− δ ω ∈ [

�′ ∩�]
→i

\ �̃ orω ∈ [
� \ (

�′ ∪�)]
i→ \ �̃

pω − ε+ δ ω ∈ [
� \�′]

→i
\ �̃ orω ∈ [

�′ \�]
i→ \ �̃

pω + ε− δ ω ∈ [
�′ \�]

→i
\ �̃ orω ∈ [

� \�′]
i→ \ �̃

pω + ε+ δ ω ∈ [
� \ (

�′ ∪�)]
→i

\ �̃ orω ∈ [
�′ ∩�]

i→ \ �̃

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qω ω ∈�→i ∩ �̃ orω ∈ [� \�]i→ ∩ �̃
qω ω ∈ [� \�]→i ∩ �̃ orω ∈�i→ ∩ �̃
qω − δ ω ∈ [

�′ ∩�]
→i

\ �̃ orω ∈ [
� \ (

�′ ∪�)]
i→ \ �̃

qω + δ ω ∈ [
� \�′]

→i
\ �̃ orω ∈ [

�′ \�]
i→ \ �̃

qω − δ ω ∈ [
�′ \�]

→i
\ �̃ orω ∈ [

� \�′]
i→ \ �̃

qω + δ ω ∈ [
� \ (

�′ ∪�)]
→i

\ �̃ orω ∈ [
�′ ∩�]

i→ \ �̃�
We first show five intermediate results on the effects of our price perturbations.

Fact 1. Di(q)= {�}.

Proof. We have, for any � �=�, that32

Ui
([�;q]) −Ui

([�;q]) =Ui
([�;p]) −Ui

([�;p]) + |���|ε≥ |���|ε > 0�

where the equality follows from the definition of q, the first inequality follows from the
fact that� is optimal at p, i.e.,� ∈Di(p), and the last inequality follows as� �=�. Thus
Di(q)= {�}.

Fact 2. Di(q̄)= {�}.

Proof. Consider an arbitrary � ∈Di(q) and an arbitrary  /∈Di(q). We have that

Ui
([�; q̄]) −Ui

([; q̄]) ≥Ui
([�;q]) −Ui

([;q]) − |��|δ > 0�

where the first inequality follows from the definition of q̄ and the second inequality fol-
lows as� is optimal at q, is not optimal at q, and δ is sufficiently small. Thus, /∈Di(q̄)
and soDi(q̄)⊆Di(q). Combining this observation with Fact 1 yieldsDi(q̄)= {�}.

Fact 3. Di(q′)⊆Di(p′).

Proof. Consider an arbitrary � ∈Di(p′) and an arbitrary  /∈Di(p′). We have that

Ui
([
�;q′]) −Ui

([
;q′]) ≥Ui

([
�;p′]) −Ui

([
;p′]) − |��|ε > 0�

where the first inequality follows from the definition of q′ and the second inequality
follows as � is optimal at p′,  is not optimal at p′, and ε is sufficiently small. Thus,
 /∈Di(q′) and soDi(q′)⊆Di(p′).

32Here, we use � to denote the symmetric difference between two sets, i.e.,���= (� \�)∪ (� \�).
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Fact 4. Di(q̄′)⊆Di(q′).

Proof. Consider an arbitrary � ∈Di(q′) and an arbitrary  /∈Di(q′). We have that

Ui
([
�; q̄′]) −Ui

([
; q̄′]) ≥Ui

([
�;q′]) −Ui

([
;q′]) − |��|δ > 0�

where the first inequality follows from the definition of q′ and the second inequality
follows as � is optimal at q′,  is not optimal at q′, and δ is sufficiently small. Thus,
Di(q̄

′)⊆Di(q′).

Fact 5. Di(q̄′)= {�′}.

Proof. We have that, for any �′ �=�′,

Ui
([
�′; q̄′]) −Ui

([
�′; q̄′]) =Ui

([
�′;q′]) −Ui

([
�;q′]) + ∣∣�′ ��′∣∣δ≥ ∣∣�′ ��′∣∣δ > 0�

where the equality follows from the definition of q̄′, the first inequality follows from the
fact that �′ is optimal at q′, i.e., �′ ∈ Di(q′), and the last inequality follows as �′ �=�′.
ThusDi(q̄′)= {�′}.

By part (i) of DFS, since Di(q̄) = {�} by Fact 2 and Di(q̄′) = {�′} by Fact 5, we have
that {ω ∈�′

→i : pω = p′
ω} ⊆�→i and �i→ ⊆�′

i→. Thus, as �′ ∈Di(p′) by Facts 3–5, we
have that�′ satisfies the requirements of part (i) of DEFS.

The proof that part (ii) of DFS implies part (ii) of DEFS is analogous.

DFS ⇒ DCFS. We first show that part (i) of DFS implies part (i) of DCFS. Consider two
price vectors p and p′ such that pω = p′

ω for all ω ∈ �i→ and pω ≥ p′
ω for all ω ∈ �→i,

and let �̃≡ {ω ∈� : pω > p′
ω}; note that �̃⊆�→i. Fix an arbitrary �′ ∈Di(p′); we need

to show that there exists a set � ∈ Di(p) that satisfies the requirements of part (i) of
DCFS.

Let q′ be given by

q′
ω =

{
p′
ω − ε ω ∈�′

→i orω ∈ [
� \�′]

i→
p′
ω + ε ω ∈ [

� \�′]
→i

orω ∈�′
i→

for some small ε > 0. Let q be given by

qω =
{
pω ω ∈ �̃
q′
ω ω ∈� \ �̃

=

⎧⎪⎪⎨
⎪⎪⎩
pω ω ∈ �̃
p′
ω − ε ω ∈�′

→i \ �̃ orω ∈ [
� \�′]

i→ \ �̃
p′
ω + ε ω ∈ [

� \�′]
→i

\ �̃ orω ∈�′
i→ \ �̃

=

⎧⎪⎪⎨
⎪⎪⎩
pω ω ∈ �̃
pω − ε ω ∈�′

→i \ �̃ orω ∈ [
� \�′]

i→ \ �̃
pω + ε ω ∈ [

� \�′]
→i

\ �̃ orω ∈�′
i→ \ �̃�
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and let� ∈Di(q). Let q̄ be given by

q̄ω =
{
qω − δ ω ∈�→i orω ∈ [� \�]i→
qω + δ ω ∈ [� \�]→i orω ∈�i→

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pω − δ ω ∈�→i ∩ �̃ orω ∈ [� \�]i→ ∩ �̃
pω + δ ω ∈ [� \�]→i ∩ �̃ orω ∈�i→ ∩ �̃
pω − ε− δ ω ∈ [

�′ ∩�]
→i

\ �̃ orω ∈ [
� \ (

�′ ∪�)]
i→ \ �̃

pω − ε+ δ ω ∈ [
�′ \�]

→i
\ �̃ orω ∈ [

� \�′]
i→ \ �̃

pω + ε− δ ω ∈ [
� \�′]

→i
\ �̃ orω ∈ [

�′ \�]
i→ \ �̃

pω + ε+ δ ω ∈ [
� \ (

�′ ∪�)]
→i

\ �̃ orω ∈ [
�′ ∩�]

i→ \ �̃�
Finally, let q̄′ be given by

q̄′
ω =

{
q′
ω ω ∈ �̃
q̄ω ω ∈� \ �̃

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p′
ω − ε ω ∈�′

→i ∩ �̃ orω ∈ [
� \�′]

i→ ∩ �̃
p′
ω + ε ω ∈ [

� \�′]
→i

∩ �̃ orω ∈�′
i→ ∩ �̃

p′
ω − ε− δ ω ∈ [

�′ ∩�]
→i

\ �̃ orω ∈ [
� \ (

�′ ∪�)]
i→ \ �̃

p′
ω − ε+ δ ω ∈ [

�′ \�]
→i

\ �̃ orω ∈ [
� \�′]

i→ \ �̃
p′
ω + ε− δ ω ∈ [

� \�′]
→i

\ �̃ orω ∈ [
�′ \�]

i→ \ �̃
p′
ω + ε+ δ ω ∈ [

� \ (
�′ ∪�)]

→i
\ �̃ orω ∈ [

�′ ∩�]
i→ \ �̃

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q′
ω ω ∈�′

→i ∩ �̃ orω ∈ [
� \�′]

i→ ∩ �̃
q′
ω ω ∈ [

� \�′]
→i

∩ �̃ orω ∈�′
i→ ∩ �̃

q′
ω − δ ω ∈ [

�′ ∩�]
→i

\ �̃ orω ∈ [
� \ (

�′ ∪�)]
i→ \ �̃

q′
ω + δ ω ∈ [

�′ \�]
→i

\ �̃ orω ∈ [
� \�′]

i→ \ �̃
q′
ω − δ ω ∈ [

� \�′]
→i

\ �̃ orω ∈ [
�′ \�]

i→ \ �̃
q′
ω + δ ω ∈ [

� \ (
�′ ∪�)]

→i
\ �̃ orω ∈ [

�′ ∩�]
i→ \ �̃�

We first show five intermediate results on the effects of our price perturbations.

Fact 1. Di(q′)= {�′}.

Proof. We have, for any �′ �=�′, that

Ui
([
�′;q′]) −Ui

([
�′;q′]) =Ui

([
�′;p′]) −Ui

([
�′;p′]) + ∣∣�′ ��′∣∣ε≥ ∣∣�′ ��′∣∣ε > 0�

where the equality follows from the definition of q′, the first inequality follows from the
fact that �′ is optimal at p′, i.e., �′ ∈Di(p′), and the last inequality follows as �′ �=�′.
ThusDi(q′)= {�′}.

Fact 2. Di(q̄′)= {�′}.
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Proof. Consider an arbitrary � ∈ Di(q′) and an arbitrary  /∈ Di(q′). For δ small
enough, we have that,

Ui
([
�; q̄′]) −Ui

([
; q̄′]) ≥Ui

([
�;q′]) −Ui

([
;q′]) − |��|δ > 0�

where the first inequality follows from the definition of q̄′ and the second inequality
follows as � is optimal at q′,  is not optimal at q′, and δ is sufficiently small. Thus,  /∈
Di(q̄

′) and so Di(q̄′) ⊆ Di(q
′). Combining this observation with Fact 1 yields Di(q̄′) =

{�′}.

Fact 3. Di(q)⊆Di(p).

Proof. Consider an arbitrary � ∈Di(p) and an arbitrary  /∈Di(p). We have that

Ui
([�;q]) −Ui

([;q]) ≥Ui
([�;p]) −Ui

([;p]) − |��|ε > 0�

where the first inequality follows from the definition of q and the second inequality
follows as � is optimal at p,  is not optimal at p, and ε is sufficiently small. Thus,
 /∈Di(q) and soDi(q)⊆Di(p).

Fact 4. Di(q̄)⊆Di(q).

Proof. Consider an arbitrary � ∈Di(q) and an arbitrary  /∈Di(q). We have that

Ui
([�; q̄]) −Ui

([; q̄]) ≥Ui
([�;q]) −Ui

([;q]) − |��|δ > 0�

where the first inequality follows from the definition of q̄ and the second inequality
follows as � is optimal at q,  is not optimal at q, and ε is sufficiently small. Thus,
Di(q̄)⊆Di(q).

Fact 5. Di(q̄)= {�}.

Proof. We have that, for any � �=�,

Ui
([�; q̄]) −Ui

([�; q̄]) =Ui
([�;q]) −Ui

([�;q]) + |���|δ≥ |���|δ > 0�

where the equality follows from the definition of q̄, the first inequality follows from the
fact that � is optimal at q, i.e., � ∈Di(q), and the last inequality follows as � �=�. Thus
Di(q̄)= {�}.

By part (i) of DFS, since {�′} =Di(q̄
′) by Fact 2 and Di(q̄) = {�} by Fact 5, we have

that {ω ∈�′
→i : pω = p′

ω} ⊆�→i and �i→ ⊆�′
i→. Thus, as � ∈Di(p) by Facts 3–5, we

have that� satisfies the requirements of part (i) of DCFS.
The proof that part (ii) of DFS implies part (ii) of DCFS is analogous.
This completes the proof of Lemma 1.

We now complete the proof of Theorem A.1 by proving that DFS implies CEFS
(Lemma 2), DFS implies CCFS (Lemma 3), DFS implies IIFS (Lemma 5), DFS implies
IDFS (Lemma 6), CFS implies DFS (Lemma 4), and IFS implies DFS (Lemma 7), as we
illustrate in Figure 1.
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Lemma 2. If the preferences of agent i satisfy DFS, then they satisfy CEFS.

Proof. Consider two finite sets of contracts Y and Z such that Yi→ = Zi→ and Y→i ⊆
Z→i. Let Y ∗ ∈ Ci(Y). We will show that there exists aZ∗ ∈ Ci(Z) such that (Y→i \Y ∗

→i)⊆
(Z→i \Z∗

→i) and Y ∗
i→ ⊆Z∗

i→.
Let

Ỹ = Y ∪ {
(ω��) ∈X :ω ∈�→i

} ∪ {
(ω�−�) ∈X :ω ∈�i→

}
Z̃ =Z ∪ {

(ω��) ∈X :ω ∈�→i

} ∪ {
(ω�−�) ∈X :ω ∈�i→

}
�

where � ∈ R is sufficiently large so that i would never choose (ω��) if ω ∈ �→i or
(ω�−�) if ω ∈ �i→.33 It is immediate that Ỹi→ = Z̃i→ and Ỹ→i ⊆ Z̃→i. It is also im-
mediate that Ci(Y)= Ci(Ỹ ) and Ci(Z)= Ci(Z̃). Let

qỸω =
{

min
{
pω ∈R : ∃(ω�pω) ∈ Ỹ}

ω ∈�→i

max
{
pω ∈R : ∃(ω�pω) ∈ Ỹ}

ω ∈�i→

qZ̃ω =
{

min
{
pω ∈R : ∃(ω�pω) ∈ Z̃}

ω ∈�→i

max
{
pω ∈R : ∃(ω�pω) ∈ Z̃}

ω ∈�i→;
note that qỸ and qZ̃ are well-defined as, for everyω ∈�, there exists a contract (ω�pω) ∈
Ỹ ⊆ Z̃ by construction. Moreover, since Ỹi→ = Z̃i→ and Ỹ→i ⊆ Z̃→i, we have that qỸω =
qZ̃ω for all ω ∈�i→ and qỸω ≥ qZ̃ω for all ω ∈�→i.

Let � = τ(Y ∗); we have that � ∈ Di(qỸ ). Part (i) of DEFS then implies that there
exists a�′ ∈Di(qZ̃) such that {

ω ∈�′
→i : qỸω = qZ̃ω

} ⊆�→i

�i→ ⊆�′
i→�

(3)

Let Z∗ = κ
([�′;qZ̃]); note that Z∗ ∈ Ci(Z̃) = Ci(Z) as �′ is optimal at qZ̃ and qZ̃ω is the

best price for ω available to i from Z̃. Thus, we can rewrite (3) as{
ω ∈ [

τ
(
Z∗)]

→i
: qỸω = qZ̃ω

} ⊆ [
τ
(
Y ∗)]

→i[
τ
(
Y ∗)]

i→ ⊆ [
τ
(
Z∗)]

i→�
(4)

CEFS

�� ��
��

��
��

��
��

��
��

IIFS

��
��

��
��

��

��
��

��
��

CFS
Lemma 4

�� DFS

Lemma 6 ����
��

��
��

��
��

��
��

Lemma 2
�� ��������

��������

Lemma 3�� ��
��

��
��

��
��

��
��

Lemma 5
����������

��������
IFS

Lemma 7
��

CCFS

�� ��������

��������

IDFS

		��������

��������

Figure 1. Proof strategy for Theorem A.1. (The unlabeled implications are immediate.)

33It is always possible to findM large enough as utility is bounded from above and ui(∅) ∈R.
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If (ω�pω) ∈ [Y \Y ∗]→i, then either of the following conditions holds:

• We have ω /∈ τ(Y ∗) = � and so either ω /∈ τ(Z∗) or qỸω �= qZ̃ω by (4). In the for-

mer case, it is immediate that (ω�pω) /∈ Z∗
→i; in the latter case, since qỸω ≥ qZ̃ω , we

must have that qỸω > q
Z̃
ω and so there exists a (ω� p̄ω) ∈ Z such that p̄ω < pω, and

therefore (ω�pω) /∈Z∗
→i.

• We have ω ∈ τ(Y ∗) but there exists (ω� p̄ω) ∈ Y such that p̄ω < pω. In this case,
(ω� p̄ω) ∈Z as Y ⊆Z, and therefore (ω�pω) /∈Z∗

→i.

Thus, [Y \Y ∗]→i ⊆ [Z \Z∗]→i.
If (ω�pω) ∈ Y ∗

i→, then ω ∈ τ(Z∗) by (4). Moreover, if (ω�pω) ∈ Y ∗
i→, then pω is the

maximal price in Y for ω and so, as Y ∗
i→ =Z∗

i→, we have that pω is the maximal price in
Z for ω. Combining the preceding two observations implies that (ω�pω) ∈Z∗

i→, and so
Y ∗
i→ ⊆Z∗

i→.
Thus, Z∗ satisfies all the requirements of part (i) of CEFS.
The proof that DFS implies part (ii) of CEFS is analogous.

Lemma 3. If the preferences of agent i satisfy DFS, then they satisfy CCFS.

Proof. The proof proceeds analogously to the proof of Lemma 2.

Lemma 4. If the preferences of agent i satisfy CFS, then they satisfy DFS.

Proof. We first show that part (i) of CFS implies part (i) of DFS. For any agent i and
price vector p ∈R�, let

Xi(p)≡ {
(ω� p̂ω) :ω ∈�→i and p̂ω ≥ pω

} ∪ {
(ω� p̂ω) :ω ∈�i→ and p̂ω ≤ pω

};
that is,Xi(p) effectively denotes the set of contracts available to agent i under pricesp.34

Let the price vectors p�p′ ∈ R� be such that |Di(p)| = |Di(p′)| = 1, pω = p′
ω for all

ω ∈�i→, and p′
ω ≤ pω for all ω ∈�→i; let {�} =Di(p) and {�′} =Di(p′). Let Y =Xi(p)

and Z =Xi(p
′). Clearly, Yi→ = Zi→ and Y→i ⊆ Z→i. Furthermore, it is immediate that

{κ([�;p])} = Ci(Y); similarly, {κ([�;p′])} = Ci(Z). Thus, part (i) of CFS implies that

Y→i \
[
κ
([�;p])]→i

⊆Z→i \
[
κ
([
�′;p′])]

→i
(5)[

κ
([�;p])]

i→ ⊆ [
κ
([
�′;p′])]

i→� (6)

From (5), we see that if ω ∈ τ([κ([�′;p′])]→i), i.e., if ω ∈ �′
→i, and p′

ω = pω, then
(ω�p′

ω) ∈ [κ([�;p])]→i and so ω ∈ �→i; in other words, {ω ∈ �′
→i : p′

ω = pω} ⊆ �→i.
Furthermore, as [κ([�;p])]i→ ⊆ [κ([�′;p′])]i→ by (6) and pω = p′

ω for eachω ∈�i→, we
have that�′

i→ ⊆�i→. Thus,�′ satisfies the requirements of part (i) of DFS.
The proof that part (ii) of CFS implies part (ii) of DFS is analogous.

Lemma 5. If the preferences of agent i satisfy DFS, then they satisfy IIFS.

34By this, we mean that, in principle, an agent could choose to pay more than pϕ for an upstream trade
ϕ and be paid less than pψ for a downstream trade ψ.
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Proof. It is enough to show that DEFS and DCFS jointly imply IIFS, as DFS implies both
DEFS and DCFS by Lemma 1. Take two price vectors p�p′ ∈ R� such that p ≤ p′, and
let� ∈Di(p) be arbitrary. We show that there exists a set of trades�′ ∈Di(p′) such that
ei�ω(�)≤ ei�ω(�′) for all ω ∈�i such that pω = p′

ω. We let

p�ω =
{
p′
ω ω ∈�→i

pω ω ∈�i→;
thus, p�ω = pω for all ω ∈�i→ and p�ω ≥ pω for all ω ∈�→i. Part (i) of DCFS then implies
that there exists a�� ∈Di(p�) such that{

ω ∈�→i : pω = p�ω
} ⊆��→i

��i→ ⊆�i→�
(7)

Now note that p�ω = p′
ω for all ω ∈ �→i and p�ω ≤ p′

ω for all ω ∈ �i→. Part (ii) of DEFS
then implies that there exists a�′ ∈Di(p′) such that{

ω ∈�′
i→ : p�ω = p′

ω

} ⊆��i→
��→i ⊆�′

→i�
(8)

Combining (7) and (8) yields{
ω ∈�→i : pω = p�ω

} ⊆��→i ⊆�′
→i{

ω ∈�′
i→ : p�ω = p′

ω

} ⊆��i→ ⊆�i→�
Recalling the definition of p�, we obtain{

ω ∈�→i : pω = p′
ω

} ⊆�′
→i{

ω ∈�′
i→ : pω = p′

ω

} ⊆�i→;
this implies ei�ω(�)≤ ei�ω(�′) for all ω ∈�i such that pω = p′

ω.

Lemma 6. If the preferences of agent i satisfy DFS, then they satisfy ICFS.

Proof. It is enough to show that DEFS and DCFS jointly imply IDFS, as DFS implies
both DEFS and DCFS by Lemma 1. Take two price vectors p�p′ ∈ R� such that p ≤ p′,
and let�′ ∈Di(p′) be arbitrary. We show that there exists a set of trades� ∈Di(p) such
that ei�ω(�)≤ ei�ω(�′) for all ω ∈�i such that pω = p′

ω. Let

p�ω =
{
p′
ω ω ∈�→i

pω ω ∈�i→;
thus, p�ω = p′

ω for allω ∈�→i and p�ω ≤ p′
ω for allω ∈�i→. Part (ii) of DCFS then implies

that there exists a�� ∈Di(p�) such that{
ω ∈�′

i→ : p�ω = p′
ω

} ⊆��i→
��→i ⊆�′

→i�
(9)

Now note that p�ω = pω for all ω ∈ �i→ and p�ω ≥ pω for all ω ∈ �→i. Part (i) of DEFS
then implies that there exists a� ∈Di(p) such that{

ω ∈�→i : p�ω = pω
} ⊆��→i

��i→ ⊆�i→�
(10)
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Combining (9) and (10) yields{
ω ∈�′

i→ : p�ω = p′
ω

} ⊆��i→ ⊆�i→{
ω ∈�→i : p�ω = pω

} ⊆��→i ⊆�′
→i�

Recalling the definition of p�, we obtain{
ω ∈�′

i→ : pω = p′
ω

} ⊆�i→
{ω ∈�→i : pω = pω} ⊆�′

→i;
this implies ei�ω(�)≤ ei�ω(�′) for all ω ∈�i such that pω = p′

ω.

Lemma 7. If the preferences of agent i satisfy IFS, then they satisfy DFS.

Proof. Let the price vectors p�p′ ∈ R� be such that |Di(p)| = |Di(p′)| = 1, pω = p′
ω

for all ω ∈ �i→, and p′
ω ≤ pω for all ω ∈ �→i; let {�} =Di(p) and {�′} =Di(p

′). As the
preferences of i satisfy the IFS condition, we have that ei�ω(�′)≤ ei�ω(�) for all ω ∈�→i

such that pω = p′
ω. Thus, if pω = p′

ω and ω ∈�′, then ω ∈� and so we must have that
{ω ∈�′

→i : p′
ω = pω} ⊆�→i. Moreover, as the preferences of i satisfy the IFS condition,

we have that ei�ω(�′)≤ ei�ω(�) for all ω ∈�i→ such that pω = p′
ω. Thus, if pω = p′

ω and
ω ∈ �, then ω ∈ �′ and so, as pω = p′

ω for all pω = p′
ω for all ω ∈ �i→, we have that

�→i ⊆�′
→i.

The proof that part (ii) of IFS implies part (ii) of DFS is analogous.

This concludes the proof of Theorem A.1.

Appendix B: Proofs of the results presented in Sections 4–7

Proof of Proposition 1

Consider the intermediary i. Let� (with a typical element ϕ) denote the set of potential
inputs that i faces, and let � (with a typical element ψ) denote the set of potential re-
quests. The cost of using input ϕ to satisfy request ψ is given by cϕ�ψ. For convenience,
when ϕ and ψ are incompatible, we simply say that cϕ�ψ = +∞.

Let us now construct a “synthetic” agent ı̂ whose preferences are identical to those
of agent i, yet are represented in the form of “intermediary with production capacity”
preferences as defined in Section 4.2. The full substitutability of the preferences of in-
termediary i then follows immediately from Proposition 2.

Agent ı̂ faces the same sets of inputs, �, and requests, �, as agent i. Agent ı̂ also has
|�|× |�| machines, indexed by pairs of inputs and requests: machinemϕ�ψ corresponds
to an input–request pair (ϕ�ψ). The costs of intermediary ı̂ are as follows (to avoid con-
fusion, we denote various costs of agent ı̂ by “ĉ” with various subindices, while the costs
of agent i are denoted by “c” with various subindices):

• For input ϕ and machine mϕ�ψ corresponding to input ϕ and some request ψ, the
cost ĉϕ�mϕ�ψ of using input ϕ in machine mϕ�ψ is equal to cϕ�ψ—the cost of using
input ϕ to satisfy request ψ under the original cost structure of agent i.
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• For any input ϕ′ �= ϕ and any request ψ, the cost ĉϕ′�mϕ�ψ is equal to +∞.

• For request ψ and any machine mϕ�ψ corresponding to request ψ and some input
ϕ, the cost ĉmϕ�ψ�ψ of using machinemϕ�ψ to satisfy request ψ is equal to 0.

• For any request ψ′ �=ψ and any machinemϕ�ψ, the cost ĉmϕ�ψ�ψ′ is equal to +∞.

With this construction, the preferences of agents i and ı̂ over sets of inputs and re-
quests are identical. Moreover, the preferences of agent ı̂ are those of an intermediary
with production capacity and are thus fully substitutable (by Proposition 2). Therefore,
the preferences of agent i are also fully substitutable.

Proof of Proposition 2

Consider first an intermediary with production capacity who has exactly one machine
at his disposal. It is immediate that the preferences of such an intermediary are fully
substitutable (see footnote 23).

Next, consider a general intermediary with production capacity, i, who has a set of
machinesM (with a typical elementm) at his disposal and faces the set of inputs� (with
a typical element ϕ) and the set of potential requests � (with a typical element ψ), with
costs as described in Section 4.2. We show that the preferences of i can be represented
as a “merger” of several (specifically, |M|+ |�|+ |�|) agents with fully substitutable pref-
erences, which by Theorem 4 implies that the preferences of intermediary i are fully
substitutable.

Specifically, consider the following set of artificial agents. First, there are |�| “input
dummies,” with a typical element ϕ̂ for a dummy that corresponds to input ϕ. Second,
there are |M| “machine dummies,” with a typical element m̂ for a dummy that corre-
sponds to machine m. Finally, there are |�| “request dummies,” with a typical element
ψ̂ for a dummy that corresponds to request ψ.

Each input dummy ϕ̂ can only buy one trade: input ϕ. He can also participate in |M|
trades as a seller: one trade with every machine dummy m̂. We denote the trade between
an input dummy ϕ̂ (as the seller) and a machine dummy m̂ (as the buyer) byωϕ�m. Like-
wise, each request dummy ψ̂ can only sell one trade: request ψ. He can also participate
in |M| trades as a buyer: one trade with every machine dummy m̂. We denote the trade
between a machine dummy m̂ (as the seller) and a request dummy ψ̂ (as the buyer) by
ωm�ψ. Each machine dummy can thus participate in |�| trades as the buyer (one with
each input dummy) and |�| trades as the seller (one with each request dummy).

The preferences of the agents are as follows. Each input dummy and each request
dummy has valuation 0 if the number of trades he executes as a seller is equal to the
number of trades he executes as a buyer (this number can thus be equal to either 0 or 1),
and has valuation −∞ otherwise. It is immediate that the preferences of input and re-
quest dummies are fully substitutable.

The preferences of each machine dummy m̂ are as follows. If m̂ buys no trades and
sells no trades, its valuation is 0. If m̂ buys exactly one trade, say ωϕ�m for some ϕ, and
sells exactly one trade, sayωm�ψ for some ψ, then its valuation is −(cϕ�m + cm�ψ), i.e., the
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total cost of preparing input ϕ for request ψ using machine m in the original construc-
tion of the utility function of agent i. In all other cases (i.e., when the machine dummy
buys or sells more than two trades or when the number of trades it buys is not equal to
the number of trades it sells), the valuation of the machine dummy is −∞. Note that the
preferences of the machine dummy are also fully substitutable.

Consider now the “synthetic” agent ı̂ obtained as the merger of the |�| input dum-
mies, |M| machine dummies, and |�| request dummies (see Section 5.2 for the details of
the merger operation). By Theorem 4, the preferences of agent ı̂ are fully substitutable.
Moreover, the valuation of agent ı̂ over any bundle of inputs and requests is identical
to the valuation of agent i over that bundle. Thus, the preferences of agent i are fully
substitutable.

Proof of Theorem 2

The indirect utility function for û(��p�)i is given by

V̂
(��p�)
i (p�\�)

≡ max
�⊆�\�

{
max
⊆�

{
ui(�∪)+

∑
ξ∈→i

pξ −
∑
ξ∈→i

pξ

}
+

∑
ψ∈�→i

pψ −
∑

ψ∈�→i

pψ

}

= max
�⊆�\�

{
max
⊆�

{
ui(�∪)+

∑
λ∈→i∪�→i

pλ −
∑

λ∈i→∪�i→
pλ

}}

= max
�⊆�

{
ui(�)+

∑
λ∈�→i

pλ −
∑
λ∈�i→

pλ

}
�

Hence, V̂ (��p�)i (p�\�)= Vi(p�\��p�). Now, Vi(p) is submodular over R� by Theorem 6.
As a submodular function restricted to a subspace of its domain is still submodular,
V̂
(��p�)
i (p�\�) is submodular over R�\�. Hence, by Theorem 6, we see that û(��p�)i is

fully substitutable, as desired.

Proof of Theorem 3

Fix a set of trades �⊆ �i such that ui(�) �= −∞ and fix a vector of prices p� for trades

in �. Let D̃i be the demand function for trades in � \ � induced by ũ
(��p�)
i . Fix two

price vectors p ∈ R�\� and p′ ∈ R�\� such that |D̃i(p)| = |D̃i(p′)| = 1, pω = p′
ω for all

ω ∈ �i→ \�, and pω ≥ p′
ω for all ω ∈�→i \�. Let � ∈ D̃i(p) be the unique demanded

set from �i \� at p and let �′ ∈ D̃i(p′) be the unique demanded set from �i \� at p′.
Note that since ui(�) �= −∞, there exists a vector of prices p∗

� for trades in � such that
for all  ∈Di((p�p∗

�)) ∪Di((p′�p∗
�)), we have � ⊆ . Fix an arbitrary  ∈Di((p�p∗

�))

and let �̃≡ \�.

Claim 1. We must have �̃=�.
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Proof. Suppose the contrary. Since �̃∪�= ∈Di((p�p∗
�)), we must have

ui()= ui(�̃∪�)+
∑

ψ∈�̃i→
pψ −

∑
ψ∈�̃→i

pψ +
∑
ϕ∈�i→

p∗
ϕ −

∑
ϕ∈�→i

p∗
ϕ

≥ ui(�∪�)+
∑

ψ∈�i→
pψ −

∑
ψ∈�→i

pψ +
∑
ϕ∈�i→

p∗
ϕ −

∑
ϕ∈�→i

p∗
ϕ� (11)

The inequality (11) is equivalent to

ui(�̃∪�)+
∑

ψ∈�̃i→
pψ −

∑
ψ∈�̃→i

pψ +
∑
ϕ∈�i→

pϕ −
∑
ϕ∈�→i

pϕ

≥ ui(�∪�)+
∑

ψ∈�i→
pψ −

∑
ψ∈�→i

pψ +
∑
ϕ∈�i→

pϕ −
∑
ϕ∈�→i

pϕ� (12)

However, the inequality (12) implies that �̃ ∈ D̃i(p); this contradicts the assumption
that D̃i(p)= {�} given that �̃ �=�.

The preceding claim implies that we must have Di((p�p∗
�)) = {} = {�̃ ∪ �} =

{�∪�}. A similar argument shows thatDi((p′�p∗
�))= {�′ ∪�}. The full substitutability

of ui then implies that {ψ ∈�′
→i : pψ = p′

ψ} ⊆�→i and�i→ ⊆�′
i→.

Proof of Theorem 4

We suppose, to the contrary, that uJ does not induce fully substitutable preferences over
trades in � \ �J . By Corollary 1 of Hatfield et al. (2013), there exist fully substitutable
preferences u̇i for the agents i ∈ I \ J such that no competitive equilibrium exists for
the modified economy with the set of agents given by I \ J along with a single agent “J”
representing the merged agents, the set of trades � \�J , and the valuation function for
agent J given by uJ .35

Now we consider the original economy with set of agents I, set of trades�, valuations
for i ∈ I \ J given by u̇i, and valuations for j ∈ J given by uj . Let [�;p] be a competitive
equilibrium of this economy; such an equilibrium exists by Theorem 1 of Hatfield et al.
(2013).

Claim 2. [� \�J;p�\�J ] is a competitive equilibrium of the modified economy.

Proof. It is immediate that [� \�J]i ∈Di(p�\�J ) for all i ∈ I \ J. Moreover, since � is
individually optimal for each j ∈ J in the original economy (at prices p),

uj(�)+
∑

ψ∈�j→
pψ −

∑
ψ∈�→j

pψ ≥ uj(�)+
∑

ϕ∈�j→
pϕ −

∑
ϕ∈�→j

pϕ (13)

35To apply Corollary 1 of Hatfield et al. (2013), we must have that for every pair (i� j) of distinct agents in
I, there exists a tradeω such that b(ω)= i and s(ω)= j. For any pair (i� j) of distinct agents in I such that no
such trade ω exists, we augment the economy by adding a trade ω and, if i ∈ J, letting ūi(� ∪ {ω})= ui(�)

(and similarly for j). It is immediate that ūi is substitutable if and only if ui is substitutable.
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for every � ⊆ �. Summing (13) over all j ∈ J and observing that when doing so, the
prices paid and received by agents in J for the trades �J among themselves cancel out,
we obtain ∑

j∈J
uj(�)+

∑
ψ∈[�\�J ]J→

pψ −
∑

ψ∈[�\�J ]→J

pψ

≥
∑
j∈J
uj(�)+

∑
ϕ∈[�\�J ]J→

pϕ −
∑

ϕ∈[�\�J ]→J

pψ�

The preceding claim shows that [� \�J;p�\�J ] is a competitive equilibrium of the
modified economy, contradicting our earlier conclusion that no competitive equilib-
rium exists in the modified economy. Hence, we see that uJ must be fully substitutable.

Proof of Theorem 5

The proof of this result is very close to Step 1 of the proof of Theorem 1 of Hatfield et al.
(2013). The only differences are that in the Hatfield et al. (2013) results, all trades could
be bought out, and the price for buying them out was set to a single large value that was
the same for all trades. By contrast, in Theorem 5 of the current paper, we allow for the
possibility that only a subset of trades can be bought out, and that the prices at which
these trades can be bought out can be different and need not be large.

Consider the fully substitutable valuation function ui and take any tradeϕ ∈�i→∩�.
Consider a modified valuation function uϕi :

u
ϕ
i (�)= max

{
ui(�)�ui

(
� \ {ϕ}) −�ϕ

}
�

That is, the valuation uϕi (�) allows (but does not require) agent i to pay �ϕ instead of
executing the particular trade ϕ.

Claim 3. The valuation function uϕi is fully substitutable.

Proof. Consider utility Uϕi and demand Dϕi corresponding to valuation uϕi . We show
that Dϕi satisfies the IFS condition (Definition 3). Fix two price vectors p and p′ such
that p≤ p′ and |Dϕi (p)| = |Dϕi (p′)| = 1. Take the unique� ∈Dϕi (p) and�′ ∈Dϕi (p′). We
need to show that

ei�ω(�)≤ ei�ω
(
�′) for all ω ∈�i such that pω = p′

ω� (14)

Let price vector q coincide withp on all trades other thanϕ and set qϕ = min{pϕ��ϕ}.
Note that if pϕ < �ϕ, then p= q and Dϕi (p)=Di(p). If pϕ > �ϕ, then under utility Uϕi ,
agent i always wants to execute trade ϕ at price pϕ, and the only decision is whether to
“buy it out” or not at the cost �ϕ; i.e., the agent’s effective demand is the same as under
price vector q. Thus, Dϕi (p)= { ∪ {ϕ} : ∈Di(q)}. Finally, if pϕ =�ϕ, then p= q and
D
ϕ
i (p)=Di(p)∪ {∪ {ϕ} : ∈Di(p)}. We construct price vector q′ corresponding to p′

analogously.
Now, if pϕ ≤ p′

ϕ <�ϕ, thenDϕi (p)=Di(p),Dϕi (p′)=Di(p′); thus, ei�ω(�)≤ ei�ω(�′)
follows directly from IFS for demandDi.
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If �ϕ ≤ pϕ ≤ p′
ϕ, then (since we assumed that Dϕi was single-valued at p and p′) it

has to be the case thatDi is single-valued at the corresponding price vectors q and q′. Let
 ∈Di(q) and ′ ∈Di(q′). Then � = ∪ {ϕ}, �′ =′ ∪ {ϕ}, and statement (14) follows
from the IFS condition for demandDi, because q≤ q′.

Finally, if pϕ < �ϕ ≤ p′
ϕ, then p = q, � is the unique element in Di(p), and �′ is

equal to ′ ∪ {ϕ}, where ′ is the unique element in Di(q′). Then for ω �= ϕ, statement
(14) follows from IFS for demandDi, because p≤ q′. Forω= ϕ, statement (14) does not
need to be checked, because pϕ < p′

ϕ.
Thus, when ϕ ∈ �i→, the valuation function uϕi is fully substitutable. The proof for

the case in which ϕ ∈�→i is completely analogous.

To complete the proof, note that the valuation

ǔ
(����)
i (�)= max

⊆�∩�

{
ui(� \)−

∑
ϕ∈

�ϕ

}

can be obtained from the original valuation ui by allowing agent i to “buy out” each trade
in set � one by one; as Claim 3 shows that each such transformation preserves substi-
tutability (and �i is finite), we see that the valuation function ǔ(����)i is substitutable as
well.

Proof of Theorem 6

We first show that if the preferences of an agent i are fully substitutable, then those pref-
erences induce a submodular indirect utility function. It is enough to show that for any

two trades ϕ�ψ ∈�i and any prices p ∈R�, phigh
ϕ > pϕ, and phigh

ψ > pψ, we have that36

Vi
(
p�\{ϕ�ψ}�pϕ�p

high
ψ

) − Vi
(
p�\{ϕ�ψ}�p

high
ϕ �p

high
ψ

)
≥ Vi(p�\{ϕ�ψ}�pϕ�pψ)− Vi

(
p�\{ϕ�ψ}�p

high
ϕ �pψ

)
� (15)

Suppose that ϕ�ψ ∈�→i.37 There are three cases to consider.
Case 1. Suppose that ϕ /∈ � for any � ∈ Di(p�\{ϕ�ψ}�pϕ�pψ). Then, ϕ /∈ � for all

� ∈Di(p�\{ϕ�ψ}�p
high
ϕ �pψ). Hence,

Vi(p�\{ϕ�ψ}�pϕ�pψ)− Vi
(
p�\{ϕ�ψ}�p

high
ϕ �pψ

) = 0

and so (15) is satisfied, as the left side of (15) must be nonnegative.

Case 2. Suppose ϕ ∈ � for all � ∈Di(p�\{ϕ�ψ}�p
high
ϕ �p

high
ψ ). Then, ϕ ∈ � for all � ∈

Di(p�\{ϕ�ψ}�pϕ�p
high
ψ ). Hence,

Vi
(
p�\{ϕ�ψ}�pϕ�p

high
ψ

) − Vi
(
p�\{ϕ�ψ}�p

high
ϕ �p

high
ψ

) = −(
pϕ −phigh

ϕ
) = phigh

ϕ −pϕ
and so (15) is satisfied, as the right side of (15) is (weakly) bounded from above by

p
high
ϕ − pϕ (with equality in the case that ϕ is demanded at both (p�\{ϕ�ψ}�pϕ�pψ) and

(p�\{ϕ�ψ}�p
high
ϕ �pψ)).

36The definition of submodularity given in Definition 4 is equivalent to the pointwise definition given
here; see, e.g., Schrijver (2002).

37The other three cases (ϕ ∈�→i and ψ ∈�i→; ϕ ∈�→i and ψ ∈�i→; and ϕ�ψ ∈�i→) are analogous.
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Case 3. Suppose that ϕ ∈ � for some � ∈ Di(p�\{ϕ�ψ}�pϕ�pψ) and ϕ /∈ � for some

� ∈Di(p�\{ϕ�ψ}�p
high
ϕ �p

high
ψ ). In this case, as the preferences of i are fully substitutable,

there exists a unique price p↑
ϕ such that there exists ���̄ ∈Di(p�\{ϕ�ψ}�p↑

ϕ�p
high
ψ ) such

that ϕ ∈ � and ϕ /∈ �̄; note that pϕ ≤ p
↑
ϕ ≤ p

high
ϕ . Similarly, let p↓

ϕ be the unique
price at which there exists ���̄ ∈ Di(p�\{ϕ�ψ}�p↓

ϕ�pψ) such that ϕ ∈ � and ϕ /∈ �̄;

note that pϕ ≤ p
↓
ϕ ≤ p

high
ϕ . By the definition of the utility function, ϕ ∈ � for all � ∈

Di(p�\{ϕ�ψ}� p̃ϕ�p
high
ψ ) for all p̃ϕ < p

↑
ϕ, and ϕ /∈ � for all � ∈ Di(p�\{ϕ�ψ}� p̃ϕ�p

high
ψ ) for

all p̃ϕ > p
↑
ϕ; similarly, ϕ ∈� for all� ∈Di(p�\{ϕ�ψ}� p̃ϕ�pψ) for all p̃ϕ < p

↓
ϕ, and ϕ /∈� for

all � ∈Di(p�\{ϕ�ψ}� p̃ϕ�pψ) for all p̃ϕ > p
↓
ϕ.

Since the preferences of i are fully substitutable, p↓
ϕ ≤ p↑

ϕ. Hence,

Vi
(
p�\{ϕ�ψ}�pϕ�p

high
ψ

) − Vi
(
p�\{ϕ�ψ}�p

high
ϕ �p

high
ψ

)
= Vi

(
p�\{ϕ�ψ}�pϕ�p

high
ψ

) − Vi
(
p�\{ϕ�ψ}�p↑

ϕ�p
high
ψ

)
+ Vi

(
p�\{ϕ�ψ}�p↑

ϕ�p
high
ψ

) − Vi
(
p�\{ϕ�ψ}�p

high
ϕ �p

high
ψ

)
= −pϕ +p↑

ϕ − 0

≥ −pϕ +p↓
ϕ − 0

= Vi(p�\{ϕ�ψ}�pϕ�pψ)− Vi
(
p�\{ϕ�ψ}�p↓

ϕ�pψ
)

+ Vi
(
p�\{ϕ�ψ}�p↓

ϕ�pψ
) − Vi

(
p�\{ϕ�ψ}�p

high
ϕ �pψ

)
= Vi(p�\{ϕ�ψ}�pϕ�pψ)− Vi

(
p�\{ϕ�ψ}�p

high
ϕ �pψ

)
�

which is exactly (15).
Now, suppose that the preferences of i are not substitutable. We suppose, moreover,

that the preferences of i fail the first condition of Defintion 2.38 Hence, for some price
vectorsp�p′ ∈R� such that |Di(p)| = |Di(p′)| = 1,pω = p′

ω for allω ∈�i→, andpω ≥ p′
ω

for all ω ∈�→i, it must be that for the unique� ∈Di(p) and�′ ∈Di(p′), we have either
{ω ∈ �′

→i : pω = p′
ω} � �→i or �i→ � �′

i→. Suppose {ω ∈ �′
→i : pω = p′

ω} � �→i; the

latter case is analogous. Let ϕ ∈�→i \ {ω ∈�′
→i : pω = p′

ω}. Let phigh
ϕ be a price for trade

ϕ high enough such that ϕ is not demanded at either (phigh
ϕ �p�\{ϕ}) or (phigh

ϕ �p′
�\{ϕ}).

Hence, Vi(pϕ�p′
�\{ϕ})−Vi(phigh

ϕ �p′
�\{ϕ})= 0, while Vi(pϕ�p�\{ϕ})−Vi(phigh

ϕ �p�\{ϕ}) > 0.
Thus, we see that Vi is not submodular.

Proof of Theorem 7

The proof is an adaptation of the proof of Theorem 1 of Sun and Yang (2009) to our
setting. As our model is more general than that of Sun and Yang (2009)—we do not
impose either monotonicity or boundedness on the valuation functions, and we do not
require that the seller values each bundle at 0 and, thus, sells everything that he could
sell—we have to carefully ensure that the Sun and Yang (2009) approach remains valid.

38The case where the preferences of i fail the second condition of Definition 2 is analogous.
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We show first that IDFS and IIFS imply the single improvement property. Fix an
arbitrary price vector p ∈ R� and a set of trades � /∈Di(p) such that ui(�) �= −∞. Fix a
set of trades  ∈Di(p). We focus exclusively on the trades in � and  by rendering all
other trades that agent i is involved in irrelevant. To this end, we first define a very high
price �,

�≡ max
�1⊆�i�ui(�1)>−∞�

�2⊆�i�ui(�2)>−∞

{∣∣Ui([�1;p]) −Ui
([�2;p])∣∣} + max

ω∈�i
{|pω|} + 1�

and then, starting from p, we construct a preliminary price vector p′ as

p′
ω =

⎧⎪⎪⎨
⎪⎪⎩
pω ω ∈�∪ orω /∈�i
pω +� ω ∈�→i \ (�∪)
pω −� ω ∈�i→ \ (�∪)�

Observe that � /∈Di(p′) and  ∈Di(p′). As � �=, we have to consider two cases (each
with several subcases), which taken together will show that there exists a set of trades
�′ �=� that satisfies conditions (ii) and (iii) of Definition 5 and Ui([�′;p])≥Ui([�;p]).

Case 1:  \� �= ∅. Select a trade ξ1 ∈ \�. Without loss of generality, assume that
agent i is the buyer of ξ1 (the case where i is the seller is completely analogous).

Starting from p′, construct a modified price vector p′′ as

p′′
ω =

{
p′
ω ω ∈�i \

((
→i \

(
�→i ∪ {ξ1}

)) ∪�i→
)

orω /∈�i
p′
ω +� ω ∈ (

→i \
(
�→i ∪ {ξ1}

)) ∪�i→�
First, since  ∈ Di(p′), ξ1 ∈ , and p′

ξ1
= p′′

ξ1
, full substitutability (Definition A.5)

implies that there exists ′′ ∈Di(p′′) such that ξ1 ∈ ′′. Second, observe that following
the price change from p′ to p′′, (′′

→i \�→i)⊆ {ξ1} and �i→ ⊆′′
i→. Thus, ′′

→i \�→i =
{ξ1} and�i→ ⊆′′

i→. We consider three subcases.
Subcase (a): ′′

i→ \�i→ �= ∅. Let ξ2 ∈ ′′
i→ \�i→. Starting from p′′, construct price

vector p′′′ as

p′′′
ω =

{
p′′
ω ω ∈�i \

((
i→ \ (

�i→ ∪ {ξ2}
)) ∪�→i

)
orω /∈�i

p′′
ω −� ω ∈ (

i→ \ (
�i→ ∪ {ξ2}

)) ∪�→i�

First, since ′′ ∈Di(p′′), ξ2 ∈′′, and p′′
ξ2

= p′′′
ξ2

, full substitutability (Definition A.6) im-
plies that there exists ′′′ ∈ Di(p′′′) such that ξ2 ∈ ′′′. Second, observe that following
the price change from p′′ to p′′′, � ⊆ ′′′ and ′′′ \� ⊆ {ξ1� ξ2}. Thus, � \′′′ = ∅ and
′′′ \�= {ξ1� ξ2} or {ξ2}.

Since ′′′ ∈Di(p′′′), we have Ui([�;p′′′])≤Ui([′′′;p′′′]). Furthermore, observe that
from the perspective of agent i, the only differences from � to ′′′ are making one new
sale ξ2, i.e., ei�ξ2(�) > ei�ξ2(

′′′) with ξ2 ∈�i→ \�, and (possibly) making one new pur-
chase ξ1, i.e., ei�ξ1(�) < ei�ξ1(

′′′) with ξ1 ∈�→i \�.
Subcase (b): ′′

i→ \�i→ = ∅ and �→i \′′
→i �= ∅. Let ψ ∈�→i \′′

→i. Starting from
p′′, construct price vector p′′′ as

p′′′
ω =

{
p′′
ω ω ∈�i \

(
(i→ \�i→)∪ (

�→i \ {ψ})) orω /∈�i
p′′
ω −� ω ∈ (i→ \�i→)∪ (

�→i \ {ψ})�
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First, since ′′ ∈Di(p′′), ψ /∈ ′′, and p′′
ψ = p′′′

ψ , full substitutability (Definition A.6) im-
plies that there exists′′′ ∈Di(p′′′) such thatψ /∈′′′. Second, observe that following the
price change from p′′ to p′′′, � \′′′ ⊆ {ψ} and ′′′ \� ⊆ {ξ1}. Thus, � \′′′ = {ψ} and
′′′ \�= {ξ1} or ∅.

Since ′′′ ∈Di(p′′′), we have Ui([�;p′′′])≤Ui([′′′;p′′′]). Furthermore, observe that
from agent i’s perspective, the only differences from� to′′′ are canceling one purchase
ψ, i.e., ei�ψ(�) > ei�ψ(′′′)withψ ∈�→i, and (possibly) making one new purchase ξ1, i.e.,
ei�ξ1(�) < ei�ξ1(

′′′) with ξ1 ∈�→i \�.
Subcase (c): ′′ =� ∪ {ξ1}. Let p′′′ = p′′ and ′′′ =′′. Since ′′′ ∈Di(p′′′), we have

Ui([�;p′′′])≤Ui([′′′;p′′′]). Furthermore, from agent i’s perspective, the only difference
from� to′′′ is making a new purchase ξ1, i.e., ei�ξ1(�) < ei�ξ1(

′′′) with ξ1 ∈�→i \�.
Case 2: \�=∅ and�\ �= ∅. Select a tradeψ1 ∈�\. Without loss of generality,

assume that agent i is a buyer inψ1 (the case where i is a seller is completely analogous).
Starting from p′, construct price vector p′′ as

p′′
ω =

{
p′
ω ω ∈�i \

(
�→i \ {ψ1}

)
orω /∈�i

p′
ω −� ω ∈�→i \ {ψ1}�

First, since  ∈Di(p′), ψ1 /∈ , and p′
ψ1

= p′′
ψ1

, full substitutability (Definition A.6) im-
plies that there exists ′′ ∈Di(p′′) such that ψ1 /∈′′. Second, observe that following the
price change from p′ to p′′, ′′ ⊆� and �→i \′′

→i ⊆ {ψ1}. Thus, �→i \′′
→i = {ψ1} and

′′ ⊆�. We consider two subcases.
Subcase (a): �i→ \′′

i→ �= ∅. Let ψ2 ∈�i→ \′′
i→. Starting from p′′, construct price

vector p′′′ as

p′′′
ω =

{
p′′
ω ω ∈�i \

(
�i→ \ {ψ2}

)
orω /∈�i

p′′
ω +� ω ∈�i→ \ {ψ2}�

First, since ′′ ∈ Di(p′′), ψ2 /∈ ′′, and p′′
ψ2

= p′′′
ψ2

, full substitutability (Definition A.5)
implies that there exists′′′ ∈Di(p′′′) such that ψ2 /∈′′′. Second, observe that following
the price change from p′′ to p′′′, ′′′ ⊆� and � \′′′ ⊆ {ψ1�ψ2}. Thus, ′′′ \�= ∅ and
� \′′′ = {ψ1�ψ2} or {ψ2}.

Since ′′′ ∈Di(p′′′), we have Ui([�;p′′′])≤Ui([′′′;p′′′]). Furthermore, observe that
from agent i’s perspective, the only differences from � to ′′′ are canceling one sale ψ2,
i.e., ei�ψ2(�) < ei�ψ2(

′′′) with ψ1 ∈ �i→ \�, and (possibly) canceling one purchase ψ1,
i.e., ei�ψ1(�) > ei�ψ1(

′′′) with ψ1 ∈�→i.
Subcase (b): ′′ = � \ {ψ1}. In this subcase, let p′′′ = p′′ and ′′′ = ′′. Since

′′′ ∈Di(p′′′), we have Ui([�;p′′′]) ≤ Ui([′′′;p′′′]). Furthermore, from the perspective
of agent i, the only difference from � to ′′′ is canceling purchase ψ1, i.e., ei�ψ1(�) <

ei�ψ1(
′′′) with ψ1 ∈�→i \�.

Taking together all the final statements from each subcase of Cases 1 and 2, if we
take �′ ≡ ′′′, we obtain that we always have a price vector p′′′ and the sets � and �′
that satisfy conditions (ii) and (iii) of Definition 5. Moreover, since we always have � ∈
Di(p

′′′), Ui([�′;p′′′])≥Ui([�;p′′′]).
Next, we show that Ui([�′;p′′′]) − Ui([�;p′′′]) ≥ 0 implies Ui([�′;p]) ≥ Ui([�;p]).

First, observe that when taking the difference, the prices of all trades ω ∈�′ ∩� cancel
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each other out. Thus, replacing the prices p′′′
ω with pω for all trades ω ∈ �′ ∩� leaves

the difference unchanged. Second, observe that in all previous subcases, the construc-
tion of p′′′ implies that for all ω ∈ ((� \ �′) ∪ (�′ \�)), pω = p′′′

ω . Combining the two
observations above,Ui([�′;p′′′])−Ui([�;p′′′])=Ui([�′;p])−Ui([�;p]) and, therefore,
Ui([�′;p])≥Ui([�;p]).

We now show that there exists a set of trades� that satisfies all conditions of Defini-
tion 5. Since� /∈Di(p), Vi(p) >Ui([�;p]). Since i’s utility is continuous in prices, there
exists ε > 0 such that Vi(q) > Ui([�;q]), where q is defined as

qω =
{
pω + ε ω ∈ (�→i \�→i)∪�i→
pω − ε ω ∈ (�i→ \�i→)∪�→i�

Our arguments above imply that there exists a set of trades � �= � such that
Ui([�;q])≥Ui([�;q]). Using the construction of q, we obtain Ui([�;p])−Ui([�;p])=
Ui([�;q]) − Ui([�;q]) + ε|(� \ �) ∪ (� \ �)| > Ui([�;q]) − Ui([�;q]) ≥ 0. Thus,
Ui([�;p]) > Ui([�;p]). This completes the proof that IDFS and IIFS imply the single
improvement property.

We now show that the single improvement property implies full substitutability
(DCFS). More specifically, we will establish that single improvement implies the first
condition of Definition A.4; the proof that the second condition is also satisfied uses
an analogous argument.

Let p ∈R� and� ∈Di(p) be arbitrary. It is sufficient to establish that for any p′ ∈R�

such that p′
ψ > pψ for some ψ ∈�→i and p′

ω = pω for all ω ∈� \ {ψ}, there exists a set of
trades�′ ∈Di(p′) that satisfies the first condition of Definition A.4.

Fix one p′ ∈ R� that satisfies the conditions mentioned in the previous paragraph
and let ψ ∈ �→i be the one trade for which p′

ψ > pψ. Note that if either ψ /∈ � or � ∈
Di(p

′), there is nothing to show. From now on, assume that ψ ∈� and� /∈Di(p′).
For any ε > 0, define a price vector pε ∈ R� by setting pεψ = pψ + ε and pεω = pω for

all ω ∈ � \ {ψ}. Let � ≡ max{ε :� ∈Di(pε)}. Note that � is well defined since i’s utility
function is continuous in prices. Also, given that� /∈Di(p′), we must have �<p′

ψ−pψ.

Next, for any integer n, define a price vector pn ∈R� by setting pnψ = pψ +�+ 1
n and

pnω = pω for allω ∈� \ {ψ}. By the definition of �, we must have� /∈Di(pn) for all n > 0.
By the single improvement property, this implies that for all n > 0, there exists a set of
trades �n such that the following conditions are satisfied: (i) Ui([�;pn]) < Ui([�n;pn]),
(ii) there exists at most one trade ω such that ei�ω(�) < ei�ω(�n), and (iii) there exists at
most one trade ω such that ei�ω(�) > ei�ω(�n).

Note that we must have ψ /∈�n for all n≥ 1. This follows since for any n≥ 1 and any
� such that ψ ∈ �, Ui([�;pn]) = Ui([�;p])− �− 1

n ≤ Ui([�;p])− �− 1
n = Ui([�;pn])

given that� ∈Di(p).
Conditions (ii) and (iii) imply that for all n > 0, we must have {ω ∈�→i : p′

ω = pω} =
{ω ∈�→i : pnω = pω} ⊆�n→i and �ni→ ⊆�i→.

Since the set of trades is finite, it is without loss of generality to assume that there is
a set of trades �∗ ∈ �i and an integer n̄ such that �n = �∗ for all n ≥ n̄. Since i’s utility
function is continuous with respect to prices and pn → p�, we must haveUi([�∗;p�])≥
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Ui([�;p�]). Since � ∈ Di(p�), this implies �∗ ∈ Di(p�). Since � < p′
ψ − pψ and Vi is

decreasing in the prices of trades for which i is a buyer, we must have Vi(p�) ≥ Vi(p
′).

Since ψ /∈�∗, we have that Ui([�∗;p′])=Ui([�∗;p�])= Vi(p�). Hence, �∗ ∈Di(p′) and
setting�′ ≡�∗ yields a set that satisfies the first condition of Definition A.4.

Proof of Theorem 10

We assume throughout that � = �i (and so X = Xi); this is without loss of generality,
as all of the analysis here considers only the sets of contracts demanded by i and so, for
any sets of contracts Y and Z such that Yi = Zi, we have that Y ∗ ∈ Ci(Y) if and only if
Y ∗ ∈ Ci(Z).

Step 1. We show first that full substitutability implies monotone substitutability for
opportunity sets such that the choice correspondence is single-valued. That is, we show
that for all finite sets of contracts Y and Z such that |Ci(Y)| = |Ci(Z)| = 1, Yi→ = Zi→,
and Y→i ⊆ Z→i, for the unique Y ∗ ∈ Ci(Y) and the unique Z∗ ∈ Ci(Z), we have that
|Z∗

→i| − |Y ∗
→i| ≥ |Z∗

i→| − |Y ∗
i→|.

Fix a fully substitutable valuation function ui for agent i. Consider two finite sets of
contracts Y and Z such that |Ci(Y)| = |Ci(Z)| = 1, Yi→ =Zi→, and Y→i ⊆Z→i. Assume
that for any ω ∈�i→, if (ω�pω) ∈ Yi→ and (ω�p′

ω) ∈ Yi→, then pω = p′
ω; this is without

loss of generality, as for a given trade ω ∈ �i→, agent i, as a seller, will only choose a
contract with the highest price available for that trade and, thus, we can ignore all other
contracts involving that trade.

Let Y ∗ ∈ Ci(Y) and Z∗ ∈ Ci(Z). Define a modified valuation ũi on τ(Zi) for agent i
by setting, for each�⊆ τ(Zi),

ũi(�)= ui
(
�→i ∪

[
τ(Z) \�]

i→
)
�

For all feasibleW ⊆Z, let

Ũi(W )= ũi
(
τ(W )

) +
∑

(ω�pω)∈[Z\W ]i→
pω −

∑
(ω�pω)∈W→i

pω�

and let C̃i denote the choice correspondence overZ associated with Ũi. By construction,

ũi(�)= ui
(
õi(�)

)
�

where here the object operator õ is defined with respect to the underlying set of trades
τ(Z):

õi(�)= {
o(ω) :ω ∈�→i

} ∪ {
o(ω) :ω ∈ τ(Z) \�i→

}
�

As the preferences of i are fully substitutable, the restriction of those preferences to τ(Z)
is fully substitutable as well.39 Thus, the restriction of i’s preferences to τ(Z) is object-
language fully substitutable and so ũi satisfies the gross substitutability condition of
Kelso and Crawford (1982) over objects.

Now we must have C̃i(Y) = {Y ∗
→i ∪ [Z \ Y ∗]i→} and C̃i(Z) = {Z∗

→i ∪ [Z \ Z∗]i→}. As
we assume quasilinearity, the Law of Aggregate Demand for two-sided markets applies

39To see the full substitutability agent i’s preferences under utility function Ũi, note that the full substi-
tutability of the restriction of i’s preferences to any subset of X follows immediately from the fact that i’s
preferences satisfy the CFS condition.
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to C̃i (by Theorem 7 of Hatfield and Milgrom 2005). As Y ⊆Z, this implies that we have
|Z∗

→i ∪ [Z \Z∗]i→| ≥ |Y ∗
→i ∪ [Z \ Y ∗]i→|; this inequality is equivalent to |Z∗

→i| − |Z∗
i→| ≥

|Y ∗
→i|−|Y ∗

i→|, which is precisely the Law of Aggregate Demand. In addition, we have that
Yi→ \ Y ∗

→i ⊆ Zi→ \ Z∗
→i and Y ∗

i→ ⊆ Z∗
i→, as the preferences of i are fully substitutable.

Thus, the preferences of i satisfy the requirements of part (i) of Definition 9 when the
choice correspondence is single-valued.

The proof that i’s preferences satisfy the requirements of part (ii) of Definition 9 is
analogous.

Step 2. We now use Step 1 to show that full substitutability implies monotone–
substitutability.

For this step, let

Ûi(�;Y)≡ ui(�)−
∑

ψ∈�→i

inf
{
pψ : (ψ�pψ) ∈ Y} +

∑
ψ∈�i→

sup
{
pψ : (ψ�pψ) ∈ Y}

�

where we take inf∅ = ∞ and sup∅ = −∞; that is, Ûi(�;Y) is the utility that i obtains
from participating in the set of trades � and both paying, for each trade in �→i, the
lowest price corresponding to a contract in Y and receiving, for each trade in �i→, the
highest price corresponding to a contract in Y .

We also extend the operator τ to sets of sets of contracts, so that τ(Y)= ⋃
Y∈Y {τ(Y)}

for any Y ⊆ ℘(X).
Finally, it is helpful to define an operator r that, given a set of available contracts W ,

makes each trade in τ(W ′) slightly more appealing to i relative toW ′ and each trade not
in τ(W ′) slightly less appealing to i relative toW ′. Let

r
(
W ;W ′� ε

) ≡ {
(ω�pω − ε) ∈X : (ω�pω) ∈W ′

→i

}
∪ {
(ω�pω + ε) ∈X : (ω�pω) ∈ [

W \W ′]
→i

}
∪ {
(ω�pω + ε) ∈X : (ω�pω) ∈W ′

i→
}

∪ {
(ω�pω − ε) ∈X : (ω�pω) ∈ [

W \W ′]
i→

}
�

The r function here allows us to perturb sets of contracts so as to obtain unique choices,
similar to the methods we used to prove Lemma 1.

Observation 1. For all sets of contracts W�Y�Z ⊆ X such that Y ⊆ Z, we have that
r(Y ;W �ε)⊆ r(Z;W �ε) for all ε > 0.

Now, we consider two finite sets of contracts Y and Z such that Yi→ = Zi→ and
Y→i ⊆ Z→i. Fix an arbitrary Y ∗ ∈ Ci(Y); we need to show that there exists a set Z∗ ∈
Ci(Z) that satisfies the requirements of part (i) of Definition 9. Let Ẑ∗ ∈ Ci(r(Z;Y ∗� ε)).

We first show five intermediate results on the effects of our price perturbations,
where we take ε > 0 to be sufficiently small and δ > 0 to be sufficiently small given ε.

Fact 1. Ci(r(Y ;Y ∗� ε))= {r(Y ∗;Y ∗� ε)}.
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Proof. For any feasibleW ⊆ Y such thatW �= Y ∗,40,41

Ui
(
r
(
Y ∗;Y ∗� ε

)) −Ui
(
r
(
W ;Y ∗� ε

)) =Ui
(
Y ∗) −Ui(W )+ ∣∣Y ∗ �W ∣∣ε

≥ ∣∣Y ∗ �W ∣∣ε
> 0�

where the equality follows from the definition of r, the first inequality follows from the
fact that Y ∗ is optimal at Y (i.e., Y ∗ ∈ Ci(Y)), and the second inequality follows from the
fact thatW �= Y ∗. Thus, we see that Ci(r(Y ;Y ∗� ε))= {r(Y ∗;Y ∗� ε)}, as desired.

Fact 2. τ(Ci(r(r(Y ;Y ∗� ε); Ẑ∗� δ)))⊆ τ(Ci(r(Y ;Y ∗� ε))).

Proof. Fix an arbitrary � ∈ τ(Ci(r(Y ;Y ∗� ε))) and an arbitrary  /∈ τ(Ci(r(Y ;Y ∗� ε))).
For ε small enough, we have that

Ûi
(
�; r(r(Y ;Y ∗� ε

); Ẑ∗� δ
)) − Ûi

(
; r(r(Y ;Y ∗� ε

); Ẑ∗� δ
))

≥ Ûi
(
�; r(Y ;Y ∗� ε

)) − Ûi
(
; r(Y ;Y ∗� ε

)) − |��|δ
> 0�

where the first inequality follows from the definition of r and the second inequality fol-
lows as � is associated with an optimal set of contracts at r(Y ;Y ∗� ε),  is not associ-
ated with an optimal set of contracts at r(Y ;Y ∗� ε), and δ is sufficiently small. Thus, /∈
τ(Ci(r(r(Y ;Y ∗� ε); Ẑ∗� δ))) and so τ(Ci(r(r(Y ;Y ∗� ε); Ẑ∗� δ)))⊆ τ(Ci(r(Y ;Y ∗� ε))).

Fact 3. τ(Ci(r(Z;Y ∗� ε)))⊆ τ(Ci(Z)).

Proof. Fix an arbitrary� ∈ τ(Ci(Z)) and an arbitrary /∈ τ(Ci(Z)). For ε small enough,
we have that

Ûi
(
�; r(Z;Y ∗� ε

)) − Ûi
(
; r(Z;Y ∗� ε

));Y ∗� ε)≥ Ûi(�;Z)− Ûi(;Z)− |��|ε > 0�

where the first inequality follows from the definition of r and the second inequality fol-
lows as � is associated with an optimal set of contracts at Z,  is not associated with
an optimal set of contracts at Z, and ε is sufficiently small. Thus,  /∈ τ(Ci(r(Z;Y ∗� ε)))
and so τ(Ci(r(Z;Y ∗� ε)))⊆ τ(Ci(Z)).

Fact 4. τ(Ci(r(r(Z;Y ∗� ε)); Ẑ∗� δ)))⊆ τ(Ci(r(Z;Y ∗� ε))).

Proof. Fix an arbitrary � ∈ τ(Ci(r(Z;Y ∗� ε))) and an arbitrary  /∈ τ(Ci(r(Z;Y ∗� ε))).
For δ small enough, we have that

Ûi
(
�; r(r(Z;Y ∗� ε

); Ẑ∗� δ
)) − Ûi

(
; r(r(Z;Y ∗� ε

); Ẑ∗� δ
))

≥ Ûi
(
�; r(Z;Y ∗� ε

)) − Ûi
(
; r(Z;Y ∗� ε

)) − |��|δ
> 0�

40Note that (feasible) subsets of Y and (feasible) subsets of r(Y ;Y ∗� ε) are in a one-to-one correspon-
dence.

41Here, we use � to denote the symmetric difference between two sets, i.e.,W �W ′ = (W \W ′)∪(W \W ′).
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where the first inequality follows from the definition of r and the second inequality
follows as � is associated with an optimal set of contracts at r(Z;Y ∗� ε),  is not as-
sociated with an optimal set of contracts at r(Z;Y ∗� ε), and δ is sufficiently small.
Thus,  /∈ τ(Ci(r(r(Z;Y ∗� ε); Ẑ∗� δ))) and so we have that τ(Ci(r(r(Z;Y ∗� ε); Ẑ∗� δ)))⊆
τ(Ci(r(Z;Y ∗� ε))).

Fact 5. Ci(r(r(Z;Y ∗� ε); Ẑ∗� δ))= {r(Ẑ∗; Ẑ∗� δ)}.

Proof. We have that for any feasibleW ⊆ r(Z;Y ∗� ε) such thatW �= Ẑ∗,42

Ui
(
r
(
Ẑ∗; Ẑ∗� δ

)) −Ui
(
r
(
W ; Ẑ∗� δ

)) =Ui
(
Ẑ∗) −Ui(W )+ ∣∣Ẑ∗ �W ∣∣δ

≥ ∣∣Ẑ∗ �W ∣∣δ
> 0�

where the equality follows from the definition of r, the first inequality follows from the
fact that Ẑ∗ is optimal at r(Z;Y ∗� ε), i.e., Ẑ∗ ∈ Ci(r(Z;Y ∗� ε)), and the last inequality
follows asW �= Ẑ∗. Thus Ci(r(r(Z;Y ∗� ε); Ẑ∗� δ))= {r(Ẑ∗; Ẑ∗� δ)}.

Combining Facts 1 and 2 shows that there is a unique element of the correspon-
dence τ(Ci(r(r(Y ;Y ∗� ε); Ẑ∗� δ))) and, since r(r(Y ;Y ∗� ε); Ẑ∗� δ) is a finite set, there
must, therefore, exist a unique

Ỹ ∗ ∈ Ci
(
r
(
r
(
Y ;Y ∗� ε

); Ẑ∗� δ
))
�

Fact 5 shows that Z̃∗ ≡ r(Ẑ∗; Ẑ∗� δ) is the unique element of Ci(r(r(Z;Y ∗� ε); Ẑ∗� δ)).
Thus, as [r(r(Y ;Y ∗� ε); Ẑ∗� δ)]→i ⊆ [r(r(Z;Y ∗� ε); Ẑ∗� δ)]→i by Observation 1 (as Y→i ⊆
Z→i) and [r(r(Y ;Y ∗� ε); Ẑ∗� δ)]i→ = [r(r(Z;Y ∗� ε); Ẑ∗� δ)]i→ (as Yi→ = Zi→), Step 1 of
the proof implies that ∣∣Z̃∗

→i

∣∣ − ∣∣Z̃∗
i→

∣∣ ≥ ∣∣Ỹ ∗
→i

∣∣ − ∣∣Ỹ ∗
i→

∣∣ (16a)[
r
(
r
(
Y ;Y ∗� ε

); Ẑ∗� δ
)]

→i
\ Ỹ ∗

→i ⊆
[
r
(
r
(
Z;Y ∗� ε

); Ẑ∗� δ
)]

→i
\ Z̃∗

→i (16b)

Ỹ ∗
i→ ⊆ Z̃∗

i→� (16c)

Each contract (ω�pω) ∈ Ỹ ∗
→i has the property thatpω is the minimal price associated

with ω among all prices associated with ω by some contract in r(r(Y ;Y ∗� ε); Ẑ∗� δ), as
Ỹ ∗ is optimal at r(r(Y ;Y ∗� ε); Ẑ∗� δ). Similarly, each contract (ω�pω) in Z̃∗

→i has the
property that pω is the minimal price associated with ω among all prices associated
withω by some contract in r(r(Z;Y ∗� ε); Ẑ∗� δ), as Z̃∗ is optimal at r(r(Z;Y ∗� ε); Ẑ∗� δ).
Moreover, each contract (ω�pω) ∈ Ỹ ∗

i→ has the property that pω is the maximal price
associated withω among all contracts associated withω in r(r(Y ;Y ∗� ε); Ẑ∗� δ), as Ỹ ∗ is
optimal at r(r(Y ;Y ∗� ε); Ẑ∗� δ). Similarly, each contract (ω�pω) ∈ Z̃∗

i→ has the property
that pω is the maximal price associated withω among all contracts associated withω in

42Note that there is a natural one-to-one correspondence between (feasible) subsets ofZ, (feasible) sub-

sets of r(Z;Y ∗� ε), and (feasible) subsets of r(r(Z;Y ∗� ε); Ẑ∗� δ).
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r(r(Z;Y ∗� ε); Ẑ∗� δ), as Z̃∗ is optimal at r(r(Z;Y ∗� ε); Ẑ∗� δ). We thus rewrite (16b) and
(16c) (while maintaining (16a)) as∣∣Z̃∗

→i

∣∣ − ∣∣Z̃∗
i→

∣∣ ≥ ∣∣Ỹ ∗
→i

∣∣ − ∣∣Ỹ ∗
i→

∣∣ (17a)⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω�pω) ∈ r(r(Y ;Y ∗� ε

); Ẑ∗� δ
) :

ω /∈ τ(Ỹ ∗
→i

)
or

∃(ω� p̄ω) ∈ r(r(Y ;Y ∗� ε
); Ẑ∗� δ

)
such that p̄ω < pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦

→i

⊆

⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω�pω) ∈ r(r(Z;Y ∗� ε

); Ẑ∗� δ
) :

ω /∈ τ(Z̃∗
→i

)
or

∃(ω� p̄ω) ∈ r(r(Z;Y ∗� ε
); Ẑ∗� δ

)
such that p̄ω < pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦

→i

(17b)⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω�pω) ∈ r(r(Y ;Y ∗� ε

); Ẑ∗� δ
) :

ω ∈ τ(Ỹ ∗
→i

)
and

�(ω� p̄ω) ∈ r(r(Y ;Y ∗� ε
); Ẑ∗� δ

)
such that p̄ω < pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦

→i

⊆

⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω�pω) ∈ r(r(Z;Y ∗� ε

); Ẑ∗� δ
) :

ω ∈ τ(Z̃∗
i→

)
and

�(ω� p̄ω) ∈ r(r(Z;Y ∗� ε
); Ẑ∗� δ

)
such that p̄ω > pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦
i→

�

(17c)

Combining Facts 1 and 2 yields that τ(Y ∗) = τ(Ỹ ∗), implying that |Y ∗
→i| = |Ỹ ∗

→i| and
|Y ∗
i→| = |Ỹ ∗

i→|, and so from (17a)–(17c) we have∣∣Z̃∗
→i

∣∣ − ∣∣Z̃∗
i→

∣∣ ≥ ∣∣Y ∗
→i

∣∣ − ∣∣Y ∗
i→

∣∣ (18a)⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω�pω) ∈ r(r(Y ;Y ∗� ε

); Ẑ∗� δ
) :

ω /∈ τ(Y ∗
→i

)
or

∃(ω� p̄ω) ∈ r(r(Y ;Y ∗� ε
); Ẑ∗� δ

)
such that p̄ω < pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦

→i

⊆

⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω�pω) ∈ r(r(Z;Y ∗� ε

); Ẑ∗� δ
) :

ω /∈ τ(Z̃∗
→i

)
or

∃(ω� p̄ω) ∈ r(r(Z;Y ∗� ε
); Ẑ∗� δ

)
such that p̄ω < pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦

→i

(18b)⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω�pω) ∈ r(r(Y ;Y ∗� ε

); Ẑ∗� δ
) :

ω ∈ τ(Y ∗
i→

)
and

�(ω� p̄ω) ∈ r(r(Y ;Y ∗� ε
); Ẑ∗� δ

)
such that p̄ω > pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦
i→

⊆

⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω�pω) ∈ r(r(Z;Y ∗� ε

); Ẑ∗� δ
) :

ω ∈ τ(Z̃∗
i→

)
and

�(ω� p̄ω) ∈ r(r(Z;Y ∗� ε
); Ẑ∗� δ

)
such that p̄ω > pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦
i→

�

(18c)

Similarly, combining Facts 3–5 yields that there exists Z∗ ∈ Ci(Z) such that τ(Z∗) =
τ(Z̃∗), implying |Z∗

→i| = |Z̃∗
→i| and |Z∗

i→| = |Z̃∗
i→|, and so from (18a)–(18c) we have∣∣Z∗

→i

∣∣ − ∣∣Z∗
i→

∣∣ ≥ ∣∣Y ∗
→i

∣∣ − ∣∣Y ∗
i→

∣∣ (19a)⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω�pω) ∈ r(r(Y ;Y ∗� ε

); Ẑ∗� δ
) :

ω /∈ τ(Y ∗
→i

)
or

∃(ω� p̄ω) ∈ r(r(Y ;Y ∗� ε
); Ẑ∗� δ

)
such that p̄ω < pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦

→i

⊆

⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω�pω) ∈ r(r(Z;Y ∗� ε

); Ẑ∗� δ
) :

ω /∈ τ(Z∗
→i

)
or

∃(ω� p̄ω) ∈ r(r(Z;Y ∗� ε
); Ẑ∗� δ

)
such that p̄ω < pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦

→i

(19b)⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω�pω) ∈ r(r(Y ;Y ∗� ε

); Ẑ∗� δ
) :

ω ∈ τ(Y ∗
i→

)
and

�(ω� p̄ω) ∈ r(r(Y ;Y ∗� ε
); Ẑ∗� δ

)
such that p̄ω > pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦
i→

⊆

⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω�pω) ∈ r(r(Z;Y ∗� ε

); Ẑ∗� δ
) :

ω ∈ τ(Z∗
i→

)
and

�(ω� p̄ω) ∈ r(r(Z;Y ∗� ε
); Ẑ∗� δ

)
such that p̄ω > pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦
i→

�

(19c)
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We have by (19c) that if ω ∈ τ(Y ∗
i→), then ω ∈ τ(Z∗

i→); moreover, since Yi→ = Zi→ by
assumption, the set of prices corresponding to a given ω ∈�i→ is the same in Y and Z.
We thus rewrite (19c) (while maintaining (19a) and (19b)) as∣∣Z∗

→i

∣∣ − ∣∣Z∗
i→

∣∣ ≥ ∣∣Y ∗
→i

∣∣ − ∣∣Y ∗
i→

∣∣ (20a)⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω�pω) ∈ r(r(Y ;Y ∗� ε

); Ẑ∗� δ
) :

ω /∈ τ(Y ∗
→i

)
or

∃(ω� p̄ω) ∈ r(r(Y ;Y ∗� ε
); Ẑ∗� δ

)
such that p̄ω < pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦

→i

⊆

⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(ω�pω) ∈ r(r(Z;Y ∗� ε

); Ẑ∗� δ
) :

ω /∈ τ(Z∗
→i

)
or

∃(ω� p̄ω) ∈ r(r(Z;Y ∗� ε
); Ẑ∗� δ

)
such that p̄ω < pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦

→i

(20b)⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ω�pω) ∈ Y :
ω ∈ τ(Y ∗

i→
)

and
�(ω� p̄ω) ∈ Y

such that p̄ω > pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦
i→

⊆

⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ω�pω) ∈Z :
ω ∈ τ(Z∗

i→
)

and
�(ω� p̄ω) ∈Z

such that p̄ω > pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦
i→

� (20c)

We have by (20b) that if ω /∈ τ(Y ∗
→i), then ω /∈ τ(Z∗

→i); moreover, since Y→i ⊆ Z→i by
assumption, the set of prices available for a given ω ∈�→i is larger in Y than in Z. We
thus rewrite (20b) (while maintaining (20a) and (20c)) as∣∣Z∗

→i

∣∣ − ∣∣Z∗
i→

∣∣ ≥ ∣∣Y ∗
→i

∣∣ − ∣∣Y ∗
i→

∣∣ (21a)⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ω�pω) ∈ Y :
ω /∈ τ(Y ∗

→i

)
or

∃(ω� p̄ω) ∈ Y
such that p̄ω < pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦

→i

⊆

⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ω�pω) ∈Z :
ω /∈ τ(Z∗

→i

)
or

∃(ω� p̄ω) ∈Z
such that p̄ω < pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦

→i

(21b)

⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ω�pω) ∈ Y :
ω ∈ τ(Y ∗

i→
)

and
�(ω� p̄ω) ∈ Y

such that p̄ω > pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦
i→

⊆

⎡
⎢⎢⎢⎣

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ω�pω) ∈Z :
ω ∈ τ(Z∗

i→
)

and
�(ω� p̄ω) ∈Z

such that p̄ω > pω

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦
i→

� (21c)

We can rewrite (21a)–(21c) as∣∣Z∗
→i

∣∣ − ∣∣Z∗
i→

∣∣ ≥ ∣∣Y ∗
→i

∣∣ − ∣∣Y ∗
i→

∣∣[
Y \Y ∗]

→i
⊆ [
Z \Z∗]

→i[
Y ∗]

i→ ⊆ [
Z∗]

i→�

Thus the preferences of i satisfy the requirements of part (i) of Definition 9.
The proof that the preferences of i satisfy the requirements of part (ii) is analogous.
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