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a b s t r a c t

We prove a natural comparative static for many-to-many matching markets in which agents’ choice
functions exhibit size-dependent discounts: reducing the extent to which some agent discounts ad-
ditional partners leads to improved outcomes for the agents on the other side of the market, and
worsened outcomes for the agents on the same side of the market. Our argument draws upon recently
developed methods bringing tools from choice theory into matching.

© 2020 Published by Elsevier B.V.
1. Introduction

Delacrétaz et al. (2019) introduced a general family of valu-
tion functions with size-dependent discounts, under which each

agent’s value for different sets of potential partners is given by an
additive valuation over individual agents, discounted by a term
that depends on the total number of agents in the set.4 The
additivity of a’s valuation ensures that each agent with whom a
may partner is evaluated independently from any other agent in
the set; thus, there are no externalities among potential partners.
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Meanwhile, the discount term captures the idea that agent a’s
marginal value for partners decreases as his number of partners
increases; thus, there is competition among potential partners.

We study many-to-many matching markets with size-depend-
ent discounts and investigate the welfare implications of a dis-
count reduction, under which an agent becomes more willing to
accept additional trading partners. Our main result (Theorem 1)
shows the intuitive comparative static that a decrease in one
agent’s discounts makes all other agents on his side of the market
worse off, and all agents on the other side of the market better
off. To prove our main result, we draw upon recently developed
methods that bring tools from choice theory into matching: First,
we show that valuation functions with size-dependent discounts
induce path-independent choice functions; moreover, discount
reductions lead to expansions of those choice functions. Then,
to complete our proof, we invoke a powerful comparative static
result of Chambers and Yenmez (2017) that applies to all ex-
pansions of path-independent choice functions.5 We also show
that our main conclusion continues to hold if the discounts of all
agents on one side of the market decrease (Corollary 1). However,
the effect of a simultaneous reduction in the discounts of agents
on opposite sides of the market is ambiguous, even if the discounts
decrease by the exact same amount (Example 1). Finally, we

5 As we discuss at the end of Section 3, for an alternative way to complete
our proof, we could use the comparative static result of Pycia and Yenmez (2019)
instead of that of Chambers and Yenmez (2017), as the two results are equivalent
in our context.
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show that our main findings can be sharpened to cover deferred-
acceptance-like mechanisms by comparing side-optimal stable
matchings (Corollary 2).

2. Model

7There are finite sets of workers W and firms F . The full set of
agents is I , where I = W ∪ F (and W ∩ F = ∅). We denote by |A|

he number of agents in A ⊆ I , and write P(I) = 2I for the set of
all subsets of agents.

For each agent a ∈ I , worker or firm, we let

¯a ≡

{
F a ∈ W
W a ∈ F

enote the set of agents on the other side of the market from a;
we refer to the set of agents Ia = I \ Īa as being on the same side
of the market as a.

For each agent a ∈ I , the valuation function va
: Īa → R assigns

a value to each individual agent on the other side of the market.
We assume that each agent a can withdraw from the market at
some cost, which for simplicity we normalize to 0, i.e., va(∅) = 0.

We extend each agent a’s valuation over individual agents to
ets of agents by assuming size-dependent discounts: we require
hat there exists a vector of discounts δa = (δa1, . . . , δ

a
j , . . . , δ

a
|Īa|

),
ith δa1 = 0, δaj−1 ≤ δaj for each 1 < j ≤ |Īa|, and such that for
ach A ⊆ Īa,6

a
δ (A) =

∑
b∈A

va(b) −

|A|∑
j=1

δaj . (1)

e assume that each agent’s valuation and discounts are such
hat the induced preferences over sets of agents on the other side
f the market are strict.7
The lists of size-dependent discounts δa and valuations va

δ for
ach agent a give rise to the discount profile δ = (δa)a∈I and

associated valuation profile vI
δ = (va

δ )a∈I .
For each agent a ∈ I , the choice function induced by a’s

valuation selects that agent’s most preferred set of other-side
agents from any given A ⊆ Īa, i.e.,

Ca
δ (A) = argmax

A′⊆A
{va

δ (A
′)}.

ote that since agents’ induced preferences over sets of partners
re strict, we always have |Ca

δ (A)|= 1, and thus we may think of
a
δ (A) as a set of agents.
A (many-to-many) matching µ assigns to each agent a a set

f agents on the other side of the market Īa, allowing for the
ossibility that a remains unmatched. That is, µ(a) ∈ P(Īa) and
e have b ∈ µ(a) if and only if a ∈ µ(b). A matching µ is
revealed) preferred to a matching µ′ by agent a if

Ca
δ (µ(a) ∪ µ′(a)) = µ(a).

A matching µ is individually rational if no agent a prefers to
unilaterally drop some of the agents with whom he is matched
at µ(a), i.e., if for each a ∈ I , we have Ca

δ (µ(a)) = µ(a). A
atching µ is unblocked if there does not exist a nonempty set
f worker–firm pairs X ⊆ W × F such that, for every a ∈ I ,
etting X

a
≡ {b ∈ Īa : {a, b} ∈ X}, we have X

a
∩ µ(a) = ∅ and

X
a
⊆ Ca

δ (µ(a)∪X
a
). A matching µ is stable if it is both individually

ational and unblocked.

6 For simplicity, with some abuse of notation, we write va
δ instead of va

δa .
7 Our size-dependent discounts concept corresponds to the ‘‘one block’’

non-monotonic version of Delacrétaz et al. (2019).
 a
2.1. Illustration

Valuations with size-dependent discounts naturally expand
the class of preferences that agents are usually allowed to ex-
press in two-sided matching markets with capacity constraints.8
Indeed, in prior two-sided models of matching with capacity
constraints, the constraints are typically ‘‘hard’’, in the sense
that they are fixed irrespective of which partners are available.9
Moreover, those prior models often assume a coarse form for
the language an agent may use to express his preferences over
partners—such as requiring a single rank-order list (with the
resulting preferences being responsive; see Roth, 1985). Under
size-dependent discount valuations, by contrast, the number of
available positions (and associated cut-offs) can be more flexible.

For instance, in a school choice setting, we might think of a
school as being able to accommodate anywhere between N − n
and N + n̄ students (with n not necessarily equal to n̄), where the
number of admitted students is more finely calibrated via a series
of increasing size-dependent discount factors

δN−n ≤ · · · ≤ δN ≤ · · · ≤ δN+n̄.

The interpretation is that the school’s maximal physical capacity
is N + n̄; and ‘‘on average’’ a group of N students should be
dmitted, but only if all of their application scores are above
N ; moreover, the number of available positions flexes upwards
nd downwards as a function of the quality of the applicants.10
ote that the ability to express ‘‘soft’’ capacity constraints may
elp open up the possibility of achieving fair and non-wasteful

assignments of students to schools (Ehlers et al., 2014).11

. Results

Our main result shows that under stable matching, reducing
ome agent’s discounts leads to worse outcomes for other agents
n the same side of the market, and better outcomes for agents
n the other side of the market. Formally, for an agent a with

discounts δa, a discount reduction occurs when we decrease some
subset of the agent’s discount values, i.e., we replace a’s discounts
δa with εa

≡ (εa
1, . . . , ε

a
k, . . . , ε

a
|Īa|

) such that εa
k ≤ δak for each

≤ k ≤ |Īa| (and εa
1 = δa1 = 0).12 We use the standard

otation v−a
δ = v

I\{a}
δ , and denote by (va

ε , v
−a
δ ) the ‘‘post-discount-

reduction’’ valuation profile obtained from vI
δ by replacing va

δ

ith va
ε .

Our main result is then as follows.

heorem 1. Consider any profile of size-dependent discounts δ with
ssociated valuation profile vI

δ . Fix any agent a ∈ I , and consider
ny discount reduction from δa to εa, with associated post-discount-
eduction valuation profile (va

ε , v
−a
δ ). For every matching µ that is

table under vI
δ , there exists a matching µ′ stable under (va

ε , v
−a
δ )

such that:

8 Valuations with size-dependent discounts also appear in auction and
rocurement settings (see Delacrétaz et al., 2019).
9 For a recent survey of the matching with constraints literature, see Kamada
nd Kojima (2017).
10 To embed hard constraints, such as a school’s maximal physical capacity
+ n̄, it suffices to set the discount term δN+n̄+1 to a very high value (in this

ase, larger than the highest possible score).
11 The general family of valuation functions with size-dependent discounts
f Delacrétaz et al. (2019) allows for various ‘‘blocks’’ of objects, where each
lock corresponds to, e.g., a different commodity. Ehlers et al. (2014) allowed for
arious student types that may be determined by, e.g., ethnicity or some other
ocioeconomic criteria. Here, for simplicity, we consider the one-block version of
he size-dependent discounts valuation of Delacrétaz et al. (2019), corresponding
o same types in the setting of Ehlers et al. (2014).
12 Our requirement that εa

1 = δa1 = 0 is natural because it means that both va
δ

nd va correspond to the same valuations va over individual agents in Īa .
ε



D. Delacrétaz, S.D. Kominers and A. Nichifor / Journal of Mathematical Economics 90 (2020) 127–131 129

C

L
t
c

P

u

i

a
o

L
t
t

P
a
a
A

A
t
b

v

A

v

w
m

t

1. µ′ is preferred to µ by all agents on the other side of the
market from a; and,

2. µ is preferred to µ′ by all agents (other than a) on the same
side of the market as a.

To prove Theorem 1, we appeal to a series of powerful com-
parative static results that Chambers and Yenmez (2017) proved
for matching markets in which all agents have path-independent
choice functions. We first show that if agents’ valuations exhibit
size-dependent discounts, then: (i) the induced choice functions
are path-independent; and (ii) following a weak decrease in one
of the discounts of an agent a, the resulting choice function is
an expansion of a’s initial choice function. Together with results
of Chambers and Yenmez (2017), (i) and (ii) allow us to prove
Theorem 1.

3.1. Size-dependent discounts induce path-independent choice func-
tions

To show that size-dependent discounts induce path-
independent choice functions, we prove that if the agents’ val-
uations exhibit size-dependent discounts, then their choice func-
tions satisfy the well-known irrelevance of rejected agents and
substitutability conditions (Lemmata 1 and 2), which together
imply path-independence (Lemma 3).

First, we note that valuations exhibiting size-dependent dis-
counts induce choice functions that satisfy the irrelevance of re-
jected agents condition, which requires that an agent a’s choice
be unaffected by the removal of a set of agents that a does not
choose.

Definition 1. An agent a’s choice function Ca
δ satisfies the irrel-

evance of rejected agents condition if for all A′, A ⊆ Īa such that
a
δ (A) ⊆ A′

⊆ A, we have Ca
δ (A) = Ca

δ (A
′).13

emma 1. If an agent’s valuation exhibits size-dependent discounts,
hen his choice function satisfies the irrelevance of rejected agents
ondition.

roof. Suppose that we have A′, A ⊆ Īa such that Ca
δ (A) ⊆ A′

⊆ A,
and suppose for the sake of seeking contradiction that Ca

δ (A
′) ̸=

Ca
δ (A): then, since a’s induced preferences are strict, we must have

va
δ (C

a
δ (A)) ̸= va

δ (C
a
δ (A

′)). Then, the fact that Ca
δ (A) ⊆ A′ implies that

va
δ (C

a
δ (A)) < va

δ (C
a
δ (A

′)) (because Ca
δ (A) can be chosen but is not

optimal when the agents in A′ are available). However, the fact
that Ca

δ (A
′) ⊆ A′

⊆ A implies that va
δ (C

a
δ (A)) > va

δ (C
a
δ (A

′)) (because
Ca

δ (A
′) can be chosen but is not optimal when the agents in A are

available), a contradiction. □

Next, we note that valuations exhibiting size-dependent dis-
counts induce choice functions that are substitutable in the sense
that whenever the set of agents available to choose from shrinks,
all agents who were initially chosen and are still available remain
chosen.

Definition 2. An agent a’s choice function is substitutable if for
any distinct A′, A ⊆ Īa, we have that Ca

δ (A
′
∪ A) = A′ implies

a′
∈ Ca

δ ({a
′
} ∪ A) for any a′

∈ A′.14

13 Blair (1988), Alkan and Gale (2003), and Chambers and Yenmez (2017)
se the term ‘‘consistency’’ instead of irrelevance of rejected agents (Aygün and

Sönmez, 2013); we adopt the latter terminology to avoid any potential confusion
with consistency as a normative requirement (see, e.g., Thomson, 2020).
14 Substitutability is essential for establishing the existence of stable outcomes
in various two-sided matching settings (see, e.g., Kelso and Crawford, 1982;
Roth, 1984); moreover, under substitutability, as shown by Hatfield and Mil-
grom (2005), simple deferred-acceptance-like auctions can be used to find a
solution. Beyond two-sided settings, (full) substitutability remains an essential
condition (Hatfield et al., 2013, 2019, 2020); for a history of substitutability,
see Hatfield et al. (2019).
Lemma 2 (Delacrétaz et al., 2020). If an agent’s valuation exhibits
size-dependent discounts, then his choice function is substitutable.

Finally, a choice function is path-independent if, when the
set of agents available to choose from is partitioned into two
subsets, the choice from the initial set of agents coincides with
the choice over the independent choices from each of the sets in
the partition.

Definition 3. An agent a’s choice function Ca
δ is path-independent

f for every A′, A ⊆ Īa, we have Ca
δ (A

′
∪ A) = Ca

δ (C
a
δ (A

′) ∪ Ca
δ (A)).

15

By Lemma 1 of Chambers and Yenmez (2017), choice functions
re path-independent if (and only if) they satisfy the irrelevance
f rejected agents and substitutability conditions;16 hence, the

following result is immediate from our Lemmata 1 and 2.

Lemma 3. If an agent’s valuation exhibits size-dependent discounts,
then his choice function is path-independent.

3.2. Choice expansion under size-dependent discounts

Now, we prove Theorem 1 by way of comparative static results
of Chambers and Yenmez (2017) for path-independent choice
functions. We first show by induction that if an agent a’s valua-
tion exhibits size-dependent discounts, then a discount reduction
from δa to εa induces a new choice function Ca

ε that is an expan-
sion of Ca

δ , in the sense that for any set of agents on the other
side of the market, each agent chosen under Ca

δ is also chosen
under Ca

ε .

Definition 4. A choice function Ĉa for agent a is an expansion of
Ca

δ if for every A ⊆ Īa, we have Ĉa(A) ⊇ Ca
δ (A).

17

emma 4. If an agent’s valuation exhibits size-dependent discounts,
hen a discount reduction for that agent leads to a choice function
hat is an expansion of the agent’s original choice function.

roof. First, we fix an agent a, a set of agents A ⊆ Īa, and
discount profile δ. Without loss of generality, we index the

gents in A in decreasing order of their individual values to a:
= {b1, b2, . . . , b|A|} with va(b1) > va(b2) > · · · > va(b|A|).18
Let ℓ ≡ |Ca

δ (A)| be the number of agents that a chooses from
. We show that Ca

δ (A) = {b1, . . . , bℓ}. Suppose to the contrary
hat Ca

δ (A) ̸= {b1, . . . , bℓ}. Then, there exists an n ≤ ℓ such that
n /∈ Ca

δ (A) and an m > ℓ such that bm ∈ Ca
δ (A), so

a
δ ((C

a
δ (A) ∪ {bn}) \ {bm}) = va

δ (C
a
δ (A)) + va(bn) − va(bm).

s n < m, va(bn) > va(bm). Therefore, we have
a
δ ((C

a
δ (A) ∪ {bn}) \ {bm}) > va

δ (C
a
δ (A)),

hich contradicts the fact that Ca
δ (A) is the subset of A that

aximizes va
δ .

Now, we let ε be a discount profile such that ε ≤ δ. To prove
he lemma, we need to show that Ca

δ (A) ⊆ Ca
ε (A).

15 Path-independence, first formally introduced by Plott (1973), is a key
property in the choice-theory literature; for a survey, see Moulin (1985).
16 This result was initially stated in a different setting and without proof
by Aizerman and Malishevski (1981, Corollary 2); that version of the result was
then formally shown to be correct by Moulin (1985, Lemma 6).
17 Chambers and Yenmez (2017) list a number of practical situations in which
choice function expansions play an important role, such as in controlled school
choice (Hafalir et al., 2013; Ehlers et al., 2014) and residency matching under
constraints (Kamada and Kojima, 2015).
18 As the induced preferences are strict, agent a does not have the same value
for any two agents in A.
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We have shown that Ca
δ (A) = {b1, . . . , bℓ}. Letting ℓ′

≡ |Ca
ε (A)|,

analogous reasoning shows that Ca
ε (A) = {b1, . . . , bℓ′}; therefore,

e need to show that ℓ′
≥ ℓ. Suppose to the contrary that

′ < ℓ. (2)

hus, we must have
a(bℓ′+1) < εa

ℓ′+1, (3)

s otherwise we would have
a
ε (C

a
ε (A) ∪ {bℓ′+1}) = va

ε (C
a
ε (A)) + va(bℓ′+1) − εa

ℓ′+1 > va
ε (C

a
ε (A)),

contradicting the fact that Ca
ε (A) is the subset of A that maxi-

mizes va
ε .

Our hypothesis (2) implies that

ℓ′
+ 1 ≤ ℓ; (4)

hence, as ε ≤ δ and δa1 ≤ δa2 ≤ · · · ≤ δa
|Īa|

, (3) implies that

δaℓ

bℓ∈Ca
δ
(A)

≤ va(bℓ)
(4)
≤ va(bℓ′+1)

(3)
< εa

ℓ′+1

(ε≤δ)
≤ δaℓ′+1

(4)
≤ δaℓ,

a contradiction. □

Given Lemmata 3 and 4, Theorem 1 follows immediately from
Theorem 2 of Chambers and Yenmez (2017), which shows that
an expansion induces the desired comparative static so long as
all agents’ choice functions are path-independent. Alternatively,
given Lemmata 1, 2, and 4, Theorem 1 also follows immediately
from Theorem 7 of Pycia and Yenmez (2019).19

4. Discussion

We can apply our Theorem 1 iteratively to show that following
a discount reduction for every agent on one side of the market, all
agents on the other side become better off—a result that mirrors
Corollary 2 of Chambers and Yenmez (2017).

Corollary 1. Suppose that all agents’ valuations exhibit size-depen-
dent discounts and consider any profile of discounts δ with associ-
ated valuation profile vI

δ . For each firm f ∈ F , consider a discount
reduction from δf to εf and denote the post-discount-reduction
aluation profile by (vF

ε , v
W
δ ). Then, for any matching µ that is stable

under vI
δ , there exists a matching µ′ that is stable under (vF

ε , v
W
δ )

such that every worker w prefers µ′ to µ.

By combining our results in Theorem 1 with Corollary 1
of Chambers and Yenmez (2017), we obtain a sharpening of our
main result that speaks to deferred-acceptance-like mechanisms
by comparing side-optimal stable matchings.20 Formally, we say
that a stable matching µ is firm-optimal if each firm prefers it
to any other stable matching µ′. Likewise, a stable matching µ
is worker-optimal if every worker prefers µ to any other stable
matching µ′.

Corollary 2. Suppose that all agents’ valuations exhibit size-depen-
dent discounts and consider any profile of discounts δ with as-
sociated valuation profile vI

δ . Fix any firm f ∈ F , and consider
any discount reduction from δf to εf , with associated post-discount
reduction valuation profile (vf

ε, v
−f
δ ). Let µF and µW , respectively,

19 To see this, note that Pycia and Yenmez (2019) consider a more general
atching model with externalities, and thus have to formulate both their

rrelevance of rejected contracts and substitutability conditions with respect to a
eference set; in the absence of externalities, their model and conditions coincide
ith ours, and their comparative static result is equivalent to that of Chambers
nd Yenmez (2017).
20 For a description of a many-to-many deferred acceptance mechanism,
ee Chambers and Yenmez (2017).
be the firm- and worker-optimal stable matchings under vI
δ . Anal-

gously, let µ̄F and µ̄W be the firm- and worker-optimal stable
atchings under (vf

ε, v
−f
δ ).21 Then, the following hold:

1. every worker prefers µ̄W to µW , and every firm other than f
prefers µW to µ̄W ; and,

2. every worker prefers µ̄F to µF , and every firm other than f
prefers µF to µ̄F .

It is clear from our argument for Theorem 1 that the result
xtends to settings in which agents other than the one undergo-
ng a discount reduction have general path-independent choice
unctions—it is not necessary that all agents’ preferences exhibit
ize-dependent discounts.
Moreover, Theorem 1 is ‘‘sharp’’ in the sense that a simul-

aneous discount reduction for agents on different sides of the
arket may have an ambiguous effect. Indeed, suppose that all
gents’ valuations exhibit size-dependent discounts and consider
ny profile of discounts δ with associated valuation profile vI

δ .
e consider simultaneous discount reductions on both sides of

he market fixing, say, f ∈ F and w ∈ W , and taking discount
eductions from δf to εf and from δw to εw . As the following
xample illustrates, with discount reductions on both sides, the
onclusion of Theorem 1 may not hold.

xample 1. Let F = {f1, f2, f3}, W = {w1, w2, w3}, and I = F∪W .
he valuations over individual agents are as follows:

vf1 (w1) = 1 vf2 (w1) = −1 vf3 (w1) = 1 vw1 (f1) = 1 vw2 (f1) = 1 vw3 (f1) = 3
vf1 (w2) = 3 vf2 (w2) = 3 vf3 (w2) = 3 vw1 (f2) = −1 vw2 (f2) = 3 vw3 (f2) = 1
vf1 (w3) = 5 vf2 (w3) = 5 vf3 (w3) = 5 vw1 (f3) = 5 vw2 (f3) = 5 vw3 (f3) = 5

For each agent a ∈ I , let the vector of discounts be δa =

0, 9, 10) and the associated valuation over sets of agents be
va

δ . Recall that valuations over sets of agents are determined by
using the discount vector to extend the valuations over individual
agents (see (1)); for example, the value of agent w1 for being
matched to both f1 and f3 is

v
w1
δ ({f1, f3}) = vw1 (f1)+vw1 (f3)−δ

w1
1 −δ

w1
2 = 1+5−0−9 = −3.

For the profile of discounts δ = (δa)a∈I with associated valua-
tion profile vI

δ = (va
δ )a∈I , there is a unique stable matching µ,22

under which

µ(f1) = {w1}, µ(f2) = {w2}, µ(f3) = {w3}.

We now consider the effects of a simultaneous (and identical)
iscount reduction for f3 and w3; the discounts for all other agents
re left unchanged. Let εf3 = εw3 = (0, 2, 10), and for each
∈ I \{f3, w3}, let εa

= δa. For the profile of discounts ε = (εa)a∈I
ith associated valuation profile vI

ε = (va
ε )a∈I , there is a unique

table matching µ′, i.e.,

′(f1) = {w3}, µ
′(f3) = {w2, w3}, µ

′(w3) = {f1, f3},

nder which agents f2 and w1 are unmatched.
Thus, matching µ′ is preferred to µ by agents f1, f3, w2, w3,

hile matching µ is preferred to µ′ by agents f2 and w1.

21 These extremal stable matchings exist because size-dependent discounts
induce substitutable choice functions (Lemma 2).
22 To see that µ is the unique stable matching, note that: (i) the discounts
are so large that each agent chooses at most one partner; (ii) the valuations
over individual agents induce positive assortative matching in which the worker
and firm with the first-, second-, and third-highest values for each other are
matched.
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