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14.1 Introduction
Many real-world settings incorporate features that go beyond the standard matching
setting described in Chapter 1. In particular, whether a given partner is accepta-
ble may depend on the terms of the relationship, such as wages, hours, specific job
responsibilities, and the like. In [4] and [33] it was shown that it is possible to extend
classical matching frameworks to determine not only who matches with whom but
also additional terms – such as wages – that specify the full “contractual” terms of
exchange.

Moreover, in many settings, one side of the market has a multi-unit demand which
cannot always be represented by a simple ranking of contracts and a capacity con-
straint. For instance, a hospital may have both a research position and a clinical
position (as specified in the contract), and rank candidates differently for each posi-
tion. A firm may have two positions and one ranking of candidates but may also
desire that, if possible, at least one hire have a particular feature, such as fluency in
a foreign language. And a baseball team may prefer different catchers depending on
the pitchers it has available.

In [10], [19], [24], [33], and [40] it was shown that, when buyers have multi-unit
demand, some form of substitutability in buyers’ preferences is key to ensuring the
existence of stable outcomes. Substitutability requires that no two contracts are com-
plements, in the sense that if a contract is rejected given some opportunity set, that
contract will still be rejected as more opportunities become available. Thus, both our
hospital and our firm above have substitutable preferences, while our baseball team
does not. That said, certain types of complementarities can be accommodated under
many-to-one matching with contracts. The many-to-one matching with contracts
framework unified matching and auctions, and has led to a number of high-profile
real-world applications such as the reorganization of the US Army’s cadet-branch
matching system [14], [41], [42], and the Israeli Psychology Master’s Match [18].

The theory of matching with contracts extends to cover two-sided settings in
which agents on both sides may have multi-unit demand [9], [10], [22], [34]. For
instance, buyers in an auction may demand multiple goods when the auctioneer has
many items for sale. Most results from many-to-one matching with contracts extend
naturally to this setting.
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The theory can also be extended to more complex market environments. In [39]
supply-chain settings were considered in which intermediaries may both buy from
upstream firms and sell to downstream firms, so the firm is no longer exclusively
just a buyer or just a seller; see also [21] and [45]. The appropriate definition of
substitutability for such settings is somewhat subtle: it requires that an intermediary
treats contracts in which he is a buyer as substitutes, and treats contracts in which he
is a seller as substitutes, but treats contracts in which he is a buyer as complementary
with contracts in which he is a seller.1 Indeed, the theory extends beyond supply
chains to arbitrarily complex trading networks, in which agents may buy from and
sell to any other agent. However, the existence of stable outcomes is not immediate
in such settings. In [25] it was shown that stable outcomes do exist when transfers
are encoded into the contracts, agents’ preferences are quasilinear in the transfers,
and agents’ preferences are substitutable. Meanwhile it was shown in [11], [12], [13]
that stable outcomes exist even without transferable utility, as long as payments are
not affected by distortionary frictions.

Section 14.2 introduces a general matching with contracts framework. Section
14.3 then considers two-sided matching settings and gives a characterization of
when stable outcomes can be found in such settings. Section 14.4 examines the sup-
ply chain and trading network settings, generalizing many results of Section 14.3.
Finally, Section 14.5 extends the matching with contracts framework to allow for
transfers.

14.2 The Framework
Consider a finite set of agents I , a finite set of contractual terms T , and a set of
bilateral contracts X ✓ I⇥I⇥T . A contract x = (s, b, t) 2 X represents a relationship
between two agents, a “seller” s 2 I and a “buyer” b 2 I \{s}, under terms t 2 T . For
example, in an exchange economy with indivisible goods and no monetary transfers,
a contract x = (s, b, t) would represent the transfer of some (unit of) good t from
seller s to buyer b; alternatively, the terms t could represent any combination of
goods transferred, services provided, and a price or wage. For any given contract
x = (s, b, t) 2 X , we denote by s(x) the associated seller s, by b(x) the associated
buyer b, and by t(x) the associated contract terms t. Given any set of contracts Y ✓

X , we denote by Yi! ⌘ {y 2 Y : s(y) = i} the set of contracts for which i is a
seller, by Y!i ⌘ {y 2 Y : b(y) = i} the set of contracts in which i is a buyer, and by
Yi ⌘ Yi! [ Y!i the set of all contracts for which agent i is involved.

Each agent i 2 I is endowed with a choice correspondence Ci that specifies which
sets of contracts agent i would choose to sign from any fixed set of available con-
tracts, and so Ci(Y ) ✓ }(Yi) for all Y ✓ X , where } denotes the power set of Yi.
We say that agent i has unit demand if for all Y ✓ X we have that |Z|  1 for all
Z 2 Ci(Y ). Whenever the choice correspondence is single-valued on all inputs, i.e.,
Ci(Y ) = {Z} for all Y ✓ X , we call Ci a choice function and write Ci(Y ) = Z.

In our examples it will often be helpful to describe choice correspondences as
arising from preference rankings over sets of contracts. A weak preference relation
⌫i for agent i over subsets of Xi induces a choice correspondence Ci for i, under
which

1 If each contract specifies the transfer of an underlying object, then this definition of substitutability is
natural; it requires that an agent treat the underlying objects as substitutes [27].
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Ci(Y ) = max⌫i{Z ✓ Xi : Z ✓ Y},

where by max⌫i we mean the maxima with respect to the ordering ⌫i; that is, Ci(Y )
contains all subsets of Y that are most preferred with respect to ⌫i. When an agent
has a single-valued unit-demand choice correspondence (i.e., a unit-demand choice
function), this can be induced by a preference relation over contracts involving that
agent.

14.3 Two-Sided Matching with Contracts
In this section we focus on two-sided matching markets, that is, we assume that the
set of agents I can be partitioned into a set of buyers B and sellers S such that, for
every contract x 2 X , we have s(x) 2 S and b(x) 2 B. We also assume throughout
this section that choice correspondences are single-valued on all inputs. We may
thus define the aggregate choice functions of buyers and sellers: for each Y ✓ X , let
CS(Y ) = [s2SCs(Y ) and CB(Y ) = [b2BCb(Y ), respectively. Finally, we also assume
throughout this section that every choice function satisfies the irrelevance of rejected
contracts condition, i.e., that i considers rejected contracts to be irrelevant in the sense
that, for all Y ✓ X and all x 2 Y \ Ci(Y ), we have that Ci(Y \ {x}) = Ci(Y ).2

14.3.1 Many-to-Many Matching with Contracts

One important condition on preferences that guarantees the existence of stable
outcomes is (gross) substitutability.

Definition 14.1. The choice function of agent i 2 I is (gross) substitutable if
for all Y ✓ X and all contracts x, z 2 X , we have that z 2 Ci(Y [ {x, z}) implies
z 2 Ci(Y [ {z}).

Substitutability may equivalently be defined by considering how the set of con-
tracts that an agent rejects (i.e., does not choose) varies across different inputs.
Formally, for an agent i 2 I and a set of contracts Y ✓ X , let Ri(Y ) ⌘ Y \ Ci(Y ) be
the rejected set. The condition in Definition 14.1 is then equivalent to requiring that,
for all Y , Z ✓ X such that Y ✓ Z, we have Ri(Y ) ✓ Ri(Z). Note that if the choice
function of every buyer (seller) is substitutable then the aggregate choice function
CB (CS) is substitutable.

Next, we introduce the standard notion of pairwise stability, which parallels the
definition of stability from Chapter 1.

Definition 14.2. An outcome A ✓ X is pairwise stable if it is:

1. Individually rational: For all i 2 I , Ci(A) = Ai.
2. Pairwise unblocked: There does not exist a buyer–seller pair (b, s) 2 B ⇥ S

and a contract z 2 (Xb \ Xs) \ A such that z 2 Cb(A [ {z}) \ Cs(A [ {z}).

2 See [2].
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The first main result of this section shows that pairwise stable outcomes are
guaranteed to exist when all agents’ choice functions are (gross) substitutable. More-
over, the set of pairwise stable outcomes is a lattice with respect to the order wB,
where Y wB Z if Yb = Cb(Y [ Z) for all b 2 B, and with respect to the order wS,
where Z wS Y if Zs = Cs(Y [Z) for all s 2 S. And, as in Chapter 1, among pairwise
stable outcomes these two orders are “opposed,” in the sense that if both Y and Z
are stable and Y wB Z then Z wS Y .

Theorem 14.3 [22]. Assume that the choice functions of all agents are substitut-
able. Then the set of pairwise stable outcomes is a non-empty lattice with respect
to wB and wS; in particular, there exists a buyer-optimal/seller-pessimal (as well
as a seller-optimal/buyer-pessimal) pairwise stable outcome.

Theorem 14.3 generalizes the existence results of Chapters 1 and 3. Moreover,
incorporating contractual terms substantially extends the domain of applications
we can consider, including such settings as matching with wages [33] and multi-unit
demand auctions [36].

Proof of Theorem 14.3 To prove Theorem 14.3, we introduce a generalized
deferred acceptance (DA) operator, show that the set of pairwise stable out-
comes corresponds to the set of fixed points of this operator, and then use
Tarski’s fixed-point theorem to establish that the set of fixed points of the
generalized DA operator is a non-empty lattice.

Given two sets of contracts XS, XB ✓ X , we define the generalized DA
operator as follows:

8(XS, XB) = (8S(XB),8B(XS)),

8S(XB) = {x 2 X : x 2 CB(XB
[ {x})}, (14.1)

8B(XS) = {x 2 X : x 2 CS(XS
[ {x})}.

Here, we can think of XS (at each iteration of the operator) as the set of con-
tracts available to sellers (and XB as the set of contracts available to buyers).
To determine whether a contract x is available to sellers (in the next iteration)
given XB, we ask whether x would be chosen by buyers if XB [ {x} were avail-
able to buyers; analogously, to determine whether a contract x is available to
buyers (in the next iteration) given XS, we ask whether x would be chosen by
sellers if XS [ {x} were available to sellers.

Lemma 14.4. If (XS, XB) is a fixed point of 8 then A = XS \ XB is pair-
wise stable, CB(XB) = A, and CS(XS) = A. Furthermore, if all agents have
substitutable preferences and A is pairwise stable then 8(A, A) is a fixed point
of 8.

Proof We start by assuming that (XS, XB) is a fixed point of 8 and, letting
A = XS \ XB, we show that CB(XB) = A, that CS(XS) = A, and that A is
pairwise stable.

• CB(XB) = A : Let x 2 A be arbitrary. Since x 2 XS and XS = 8S(XB), we
have x 2 CB(XB [ {x}). Since x 2 XB, we obtain x 2 CB(XB). Thus, since x
was arbitrary, we have A ✓ CB(XB).
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Next, consider some x 2 XB \ XS. If x 2 CB(XB), then we have
x 2 CB(XB [ {x}) and therefore x 28S(XB). Since x /2 XS, we obtain a
contradiction to our assumption that XS = 8S(XB).

• CS(XS) = A : An argument analogous to the preceding argument shows that
CS(XS) = A.

• A is pairwise stable: Individual rationality of A for buyers follows since
CB(XB) = A (from our preceding argument) and thus – since agents’ choice
functions satisfy the irrelevance of rejected contracts condition – we have that
CB(A) = A. We now show that A is pairwise unblocked. Let z 2 X \ A be
arbitrary and assume that z /2 XS; the case where z /2 XB is analogous.
We will argue that z /2 CB(A [ {z}); if so, then {z} does not block A. Since
XS = 8S(XB), we have that z /2 CB(XB [ {z}); thus, since CB(XB) = A,
by the irrelevance of rejected contracts condition, z /2 CB(A [ {z}). Next, we
assume that A is pairwise stable, we let (XS, XB) = 8(A, A), and we show that
A = XS \ XB and (XS, XB) is a fixed point of 8.

• A = XS \ XB : If A * XS \ XB, the definition of 8 immediately implies that
A is not individually rational. If there were a contract z 2 (XS \ XB) \ A, we
would have z 2 CB(A [ {z}) (as z 2 XS) and z 2 CS(A [ {z}) (as z 2 XB) so
that A would be blocked by b(z) and s(z).

• (XS, XB) is a fixed point of 8 : We show that 8S(XB) = XS; the fact
that 8B(XS) = XB follows by an analogous argument. We show first that
8S(XB) ✓ XS. Let y 2 8S(XB) be arbitrary. By the definition of 8, we have
that y 2 CB(XB [ {y}). By substitutability, we obtain that y 2 CB(A[ {y}) and
therefore y 2 8S(A) = XS. Now, we argue that XS ✓ 8S(XB). Let y 2 XS be
arbitrary. Since XS = 8S(A), we obtain that y 2 CB(A [ {y}). If y /2 8S(XB),
we would have y /2 CB(XB [ {y}) and, by the irrelevance of rejected contracts
condition, there is some z 2 XB \ A such that z 2 CB(XB [ {y}). By substitut-
ability, we have that z 2 CB(A [ {z}) and thus z 2 XS. Hence, z 2 XS \ XB

and this contradicts XS \ XB = A.

For the remainder of the proof of Theorem 14.3, we introduce the following
order on X ⇥ X : (XS, XB) ` (X̃S, X̃B) if and only if XS ✓ X̃S and XB ◆ X̃B.

We show first that 8 is isotone with respect to `. For that purpose, take any
pair (XS, XB), (X̃S, X̃B) 2 X ⇥ X such that (XS, XB) ` (X̃S, X̃B). We need
to show that 8(XS, XB) ` 8(X̃S, X̃B), or 8S(XB) ✓ 8S(X̃B) and 8B(XS) ◆

8B(X̃S). To show that 8S(XB) ✓ 8S(X̃B), take some y 2 X such that y 2

CB(XB [ {y}). By substitutability and the fact that XB ◆ X̃B, we immediately
obtain y 2 CB(X̃B [ {y}) and thus y 2 8S(X̃B). The argument to show that
8B(XS) ◆ 8B(X̃S) is completely symmetric.

Since 8 is isotone with respect to `, Tarski’s fixed-point theorem implies
that the set of fixed points is a non-empty lattice with respect to `.

To complete the proof, we now show that the set of pairwise stable out-
comes is a lattice with respect to the order AS. Take any two fixed points
(XS, XB), (X̃S, X̃B) 2 X ⇥ X of 8 such that (XS, XB) ` (X̃S, X̃B). Let
A = XS \ XB and Ã = X̃B \ X̃S. We claim that Ã AS A. By the first part of
Lemma 14.4, we have that CB(XB) = A and CB(X̃B) = Ã. Since XB ◆ X̃B, we
obtain that CB(A[Ã) = A. A similar argument establishes that CS(A[Ã) = Ã.
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Hence, the lattice property of the set of stable outcomes follows from the
lattice property of the set of fixed points of 8.

Next, we define a concept of stability that allows arbitrary groups of agents to
coordinate in order to block some outcome.

Definition 14.5. An outcome A ✓ X is stable if it is :

1. Individually rational: For all i 2 I , Ci(A) = Ai.
2. Unblocked: There does not exist a non-empty set of contracts Z ✓ X \ A

such that Z ✓ CB(A [ Z) \ CS(A [ Z).

Note that while pairwise stability requires only the absence of blocks consisting of
a single contract, stability requires the absence of blocking sets of contracts; hence,
by definition, stability is more stringent than pairwise stability.

Our next result shows that under substitutability, pairwise stability and stability
are equivalent.

Theorem 14.6 [22]. If all choice functions are substitutable, then any pairwise
stable outcome is stable.

It turns out that substitutability is necessary in a maximal domain sense for the
guaranteed existence of stable outcomes.3 Consider markets in which the contract
set is exhaustive in the sense that, for each pair (b, s) 2 B ⇥ S, there exists a contract
x 2 X such that b(x) = b and s(x) = s.

Theorem 14.7 [22]. Suppose that there are at least two sellers and the contract
set is exhaustive. If the choice function of agent s 2 S is not substitutable then
there exist substitutable choice functions for the other agents such that no stable
outcome exists.

The following example shows how to construct an economy without a stable out-
come given an agent with non-substitutable preferences; the proof of Theorem 14.7
generalizes the structure of this example.

Example 14.8 [22]. Consider a seller s with the choice function Cs induced by
the preference ordering

�s: {x, y} � ?,

where b(x) 6= b(y). Note that Cs is not substitutable, as Cs({x, y}) = {x, y}

while Cs({y}) = ?. Now, suppose that there exists another seller s0 and two
contracts x0 and y0 with s0 such that b(x0) = b(x) and b(y0) = b(y), and suppose
that the choice function of s0 is induced by the preference relation

�s0 : {y0
} � {x0

} � ?.

3 The existence of stable outcomes in the presence of non-substitutability can sometimes be obtained in
large market frameworks like those of Chapter 16.
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Finally, suppose that b(x) has choice function Cb(x) induced by the preference
ordering

�b(x): {x0
} � {x} � ?

and b(y) has choice function Cb(y) induced by the preference ordering

�b(y): {y} � {y0
} � ?.

The outcome {x, y} is not stable, as {x0} is a blocking set. However, for any
other individually rational allocation A, we must have that As = ?; but then,
either {x, y} is a blocking set (if x0 /2 A) or {y0} is a blocking set (if x0 2 A).

We now introduce a second restriction on agents’ choice functions which requires
that the number of chosen contracts weakly increases when the set of available
contracts increases (in a superset sense).

Definition 14.9. The choice function of a buyer i 2 B (seller i 2 S) satisfies the
law of aggregate demand (supply) if for any pair of contracts Y , Z ✓ X such
that Y ✓ Z, we have that |Ci(Y )|  |Ci(Z)|.

When combined with substitutability, the laws of aggregate supply and demand
allow us to generalize the rural hospitals theorem of Chapter 1 to our many-to-many
setting.

Theorem 14.10 [22]. If the choice functions of all agents are substitutable and
satisfy the laws of aggregate supply and demand, then for each agent i 2 I, the
number of contracts that i signs is invariant across all stable outcomes.

One can use the preceding theorem to show that a mechanism that picks the buyer-
optimal or seller-optimal stable outcome is dominant-strategy incentive compatible,
or strategy-proof, for all unit-demand buyers or sellers, respectively.

Theorem 14.11 [22]. If the choice functions of all agents are substitutable and
satisfy the laws of aggregate supply and demand then the buyer-optimal stable
mechanism is strategy-proof for all unit-demand buyers and the seller-optimal
stable mechanism is strategy-proof for all unit-demand sellers.

Theorem 14.11 generalizes the strategy-proofness result of Chapter 1 to allow for
substitutable preferences for the other side of the market. However, the next example
shows that the incentive-compatibility results do not extend beyond the unit-demand
case.

Example 14.12 [24]. Consider a seller s with the choice function Cs induced
by the preference ordering

�s : {x, y} � {x, z} � {y, z} � {x} � {y} � {z} � ?;

that is, s prefers b(x) to b(y) to b(z) and desires at most two contracts. Addi-
tionally, there is a seller s0 with the unit-supply choice function Cs0 induced by
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the preference ordering

�s0 : {y0
} � {x0

} � {z0
} � ?,

where b(x) = b(x0) 6= b(y) = b(y0) 6= b(z) = b(z0) 6= b(x).
The choice functions of the buyers are induced by the preferences

�b(x) : {x0
} � {x} � ?

�b(y) : {y} � {y0
} � ?

�b(z) : {z} � {z0
} � ?.

The only stable outcome is {x0, y, z}. However, if s were to report

�̂s: {x, z} � {x} � {z} � ?,

then the only stable outcome under the reported preferences would be {x, y0, z};
this outcome is preferred by s even under the preferences �s.

14.3.2 Many-to-One Matching with Contracts

A case of special interest is the many-to-one matching with contracts setting, intro-
duced and developed by [10], [24], and [33]; see also [40]. In this setting, buyers
have unit demand. It is immediate that stable outcomes exist in this setting when
sellers’ choice functions are substitutable (Theorem 14.3) and, when sellers’ choice
functions satisfy the law of aggregate supply, the buyer-optimal stable mechanism is
strategy-proof for buyers (Theorem 14.11).

However, it is no longer the case that substitutability is necessary (even in the
maximal domain sense of Theorem 14.7) for the existence of stable outcomes.

Example 14.13 [19]. Consider a seller s with the choice function Cs induced
by the preference ordering

�s: {x, y} � {x̃} � {x} � {y} � ?,

where b(x) = b(x̃) 6= b(y). Note that Cs is not substitutable, as Cs({x̃, x}) = {x̃}

while Cs({x̃, x, y}) = {x, y}.
However, a stable outcome always exists as long as other sellers have sub-

stitutable choice functions. To see this, note that b(x) must either prefer {x} to
{x0} or prefer {x0} to {x}. In the former case we can treat the choice function of
s as if it were induced by

�s: {x, y} � {x} � {y} � ?,

and these preferences induce a substitutable choice function; moreover, the
outcome of a buyer-proposing deferred acceptance mechanism (under the new
preferences) will be stable (with respect to the original preferences), as x will
never be rejected, and so b(x) must obtain a contract at least as good as x. In
the latter case, we can treat the choice function of s as if it were induced by4

�s: {x̃} � {y} � ?,

4 Here, by the buyer-proposing mechanism, we mean the fixed point of the generalized DA operator (14.1)
obtained by starting at (?, X ) and iterating.
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and these preferences also induce a substitutable choice function. Moreover,
the outcome of a buyer-proposing deferred acceptance mechanism (under the
new preferences) will be stable (with respect to the original preferences), as x̃
will never be rejected, and so b(x) must obtain a contract at least as good as x̃.

14.3.2.1 Weakened Substitutability Conditions
Examples like that in Example 14.13 have motivated the search for conditions on
seller preferences that ensure the existence of stable outcomes. A number of weak-
ened substitutability conditions that guarantee the existence of stable outcomes have
been found. Moreover, many of these conditions guarantee the existence of a stable
and strategy-proof (for unit demand buyers) mechanism. In [20], for example, the
authors identified the following condition, called unilateral substitutability.

Definition 14.14. The choice function of a seller s is unilaterally substitutable
if, for all x, z such that b(x) 6= b(z) and all Y ✓ X \ (Xb(x) [ Xb(z)), we have that

z /2 Cs({x} [ Y [ {z}) \ Cb(Y [ {z}).

In [20] it was shown that when the choice function of each seller is unilaterally sub-
stitutable, a stable outcome always exists; moreover, a stable outcome can be found
by any cumulative offer mechanism (and, in fact, the outcome of the cumulative offer
mechanism does not depend on the ordering used by the mechanism).5 Moreover,
when the choice function of each seller also satisfies the law of aggregate supply, any
cumulative offer mechanism is strategy-proof.

Later, a more general condition under which stable outcomes are guaranteed to
exist – substitutable completability – was introduced by [23]. Substitutable comple-
tion interprets certain non-substitutable choice functions in many-to-one matching
with contracts as substitutable choice functions in the setting of many-to-many
matching with contracts. In the setting of Example 14.13, for instance, we can
think of “completing” the choice function of buyer b as allowing b to choose the

5 For any ordering ` over the set of contracts and preferences � for the (unit-demand) buyers, the outcome
of the cumulative offer mechanism is determined by the following algorithm:

Step 0: The set of contracts available to the sellers is A0 ⌘ ?.
Step t � 1: Construct the set

Ut
⌘ {x 2 X \ At�1 : b(x) /2 b(CS(At�1)), Cb(x)({x}) = x,

and @z 2 (Xb(x) \ At�1) such that Cb(x)({x, z}) = z}.

If Ut is empty then the algorithm terminates and the outcome is CS(At�1); otherwise,
At ⌘ At�1 [ {y}, where y is the highest-ranked contract in Ut according to `.

Here, the set Ut is composed of contracts x such that:

1. the contract x has not yet been offered;
2. the buyer of x does not have any contract chosen by the sellers from At�1;
3. the buyer of x finds x acceptable; and
4. the buyer of x does not have any other not-yet-offered contract z that they prefer to x.
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(infeasible) set of contracts {x, x̃} whenever it is available, i.e., to have a choice
function Ĉs induced by

�̂s: {x, x̃} � {x, y} � {x̃} � {x} � {y} � ?. (14.2)

Note that Ĉs is substitutable; thus, by Theorem 14.3, there must exist a stable out-
come A with respect to the completed choice function. However, since b(x) has
unit demand, A cannot involve both x and x̃; hence, A must also be stable with
respect to Cs.

More generally, when all the buyers’ choice functions satisfy a condition called
substitutable completability, there exists a lattice of stable outcomes that correspond
to fixed points of (14.1) under a substitutable completion.6

Definition 14.15 [23]. A choice function Cs for seller s is substitutably
completable if there exists a choice function Ĉs such that:

1. For all Y ✓ X , we have that either Ĉs(Y ) = Cs(Y ) or there exists a buyer b
such that |[Ĉs(Y )]!b| � 2.

2. The choice function Ĉs is substitutable.

It turns out that substitutable completability is sufficient for the existence of a
stable outcome.

Theorem 14.16 [23]. Assume that the choice functions of all sellers are sub-
stitutably completable and buyers have unit demand. Then a stable outcome
exists.

Moreover, when the profile of choice functions is substitutably completable
in such a way that each completion satisfies the law of aggregate demand, any
cumulative offer mechanism is strategy-proof for buyers.

Theorem 14.17 [23]. If every seller’s choice function has a substitutable comple-
tion that also satisfies the law of aggregate demand, and buyers have unit demand,
then any cumulative offer mechanism is strategy-proof for buyers.

All unilaterally substitutable choice functions are substitutably completable [29],
[46].

In fact, considerably weaker conditions are necessary and sufficient to guarantee
that there is a stable mechanism that is strategy-proof for buyers; moreover, when-
ever a stable and strategy-proof mechanism exists, the cumulative offer mechanism
is the unique stable and strategy-proof mechanism [28].7

6 However, there may also exist other stable outcomes: for instance, when we use the substitutable
completion (14.2), and the choice functions of the buyers are induced by

�b(x) : {x̃} � {x} � ?
�b(y) : {y} � ?,

the only fixed point of (14.1) corresponds to {x̃}, even though both {x̃} and {x, y} are stable. Note also that the
full set of stable outcomes does not form a lattice in the usual way, as b(x) strictly prefers a different stable
outcome than b(y).

7 In particular, [27] showed that any when a stable and strategy-proof mechanism is guaranteed to exist,
then that mechanism is equivalent to a cumulative offer mechanism, and in fact all cumulative offer mechanisms
produce the same outcome. (The cumulative offer mechanism was defined in footnote 5.)
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14 GENERALIZED MATCHING: CONTRACTS AND NETWORKS

However, the existence of a stable outcome can be guaranteed under still weaker
conditions; [20] introduced bilateral substitutability, which is enough to ensure that
the cumulative offer mechanism produces a stable outcome. Subsequently, [28] intro-
duced observable substitutability across doctors, which is necessary and sufficient to
guarantee that the cumulative offer mechanism produces a stable outcome. How-
ever, observable substitutability across doctors is not the maximal domain of choice
functions for which stable outcomes can be guaranteed; finding precise condi-
tions on choice functions that ensure the existence of stable outcomes is an open
problem.

14.3.2.2 Applications
The weakened substitutability conditions just discussed have been useful in real-
world settings. In particular, in many-to-one matching with contracts settings, agents
on the side with multiunit demand frequently have choice functions that are not sub-
stitutable and yet still allow for stable and strategy-proof matching. For instance,
the US Military Academy (West Point) assigns graduating cadets to branches of
service via a centralized system in which contracts encode not only the cadet and
branch of service but also potential additional guaranteed years of service. Branches
rank cadets according to a strict order-of-merit list but also prioritize contracts
with additional guaranteed years for a fixed number of positions. As it turns out,
this preference structure introduces non-substitutabilities since the offer of a con-
tract with additional years may induce a service branch to choose a previously
rejected contract; nevertheless, the choice functions of the branches are substitutably
completable (and, in fact, unilaterally substitutable) and thus admit stable and
strategy-proof matching [42]. This observation has led to a redesign of not only the
mechanism used to assign West Point cadets but also the mechanism used to assign
ROTC cadets to branches of service [5], [14]. Additionally, [35] developed a generali-
zation of the cadet–branch matching framework, called slot-specific priorities, which
allowed for the types of non-substitutabilities seen in the cadet-branch matching set-
ting; this framework has proven useful in a number of real-world contexts, including
school choice programs in Boston [8] and Chicago [7].

Weakened substitutability conditions were also key in the redesign of the Israeli
Psychology Masters Match [18]. They have also proven fruitful in the analysis of
entry-level labor markets with regional caps, such as the Japanese medical-residency
matching program [30], [31], [32], the assignment of legal traineeships in Ger-
many [6], the allocation of students to the Indian Institutes of Technology [3], and
interdistrict school choice programs [17].

14.4 Supply Chains and Trading Networks
While early work on matching with contracts focused on two-sided settings, most
of the key insights can be extended to a more general framework in which an agent
can act as both a buyer and a seller. In [39] the two-sided setting was generalized
to multi-layered supply chains, in which agents buy from agents “upstream” and
sell to agents “downstream.” In [12], [13], and [25] an even more general trading
network setting was considered in which no a priori restrictions are placed on the set
of possible contractual relationships.
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In this section, we first consider the supply chain setting and then the more general
case of trading networks. We maintain the assumptions that choice correspondences
are single-valued and satisfy the irrelevance-of-rejected-contracts condition.

In supply chains and trading networks, an intermediary (i.e., an agent i such that
there exist contracts x and y such that s(x) = i = b(y)) often sees contracts of which
he is the seller and contracts of which he is the buyer as complements. The full sub-
stitutability condition extends (gross) substitutability to intermediaries by requiring
that an intermediary consider contracts for which he is a buyer to be (gross) sub-
stitutes, contracts for which he is a seller to be (gross) substitutes, and a contract in
which he is a buyer to be a (gross) complement to contracts in which he is a seller.

Definition 14.18. The choice function of agent i is fully substitutable, if for all
Y ✓ X and all x, z 2 X , both of the following conditions hold:

• Same-side substitutability: If x, z 2 Xi! and z 2 Ci(Y [ {x, z}) then
z 2 Ci(Y [ {z}). Similarly, if x, z 2 X!i and z 2 Ci(Y [ {x, z}) then
z 2 Ci(Y [ {z}).

• Cross-side complementarity: If x 2 Xi!, z 2 X!i, and z /2 Ci(Y [ {x, z}) then
z /2 Ci(Y [ {z}). Similarly, if x 2 X!i, z 2 Xi!, and z /2 Ci(Y [ {x, z}) then
z /2 Ci(Y [ {z}).

Intuitively, full substitutability requires that the agents see the goods that flow
through the network as gross substitutes.

14.4.1 Supply Chains

One important special case is that of networks that are (directed) acyclic. Such
networks allow for “vertical” supply chain structures in which some agents
intermediate-trade between agents who only buy and agents who only sell, but these
networks rule out “horizontal” trade among intermediaries. Formally, we say that
the economy is a supply chain if there do not exist contracts x1, . . . , xn such that
b(x`) = s(x`+1) for all 1  `  n � 1 and b(xn) = s(x1).

We next extend the concept of pairwise stability to trading networks. Instead of
considering blocking contracts, we consider blocks of the form of chains in the
network.

Definition 14.19. An outcome A ✓ X is chain-stable if it is:

1. Individually rational: For all i 2 I , Ci(A) = Ai.
2. Chain unblocked: There does not exist an ordered set Z = {z1, . . . , zn} ✓

X \ A such that s(z`) = b(z`+1) for all 1  `  n � 1 and such that Zi ✓

Ci(Z [ A) for all i 2 I .

We now extend Theorem 14.3 to supply chains.

Theorem 14.20 [39]. In supply chains, if the choice functions of all agents are
fully substitutable then chain-stable outcomes exist.
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The proof of Theorem 14.20 is similar to the proof of Theorem 14.3. We first
define aggregate choice functions CS and CB as follows:

CS(Y , Y 0) ⌘

[

i2I

Ci(Yi! [ Y 0
!i)i!,

CB(Y , Y 0) ⌘

[

i2I

Ci(Y!i [ Y 0
i!)!i.

Here, CS(Y , Y 0) is the set of contracts that are chosen by their sellers when given
access to the sale contracts in Y and the purchase contracts in Y 0; CB(Y , Y 0) is
defined analogously. For each XB, XS ✓ X , we then define a generalized DA
operator by

8(XS, XB) = (8S(XB, XS),8B(XS, XB)),

8S(XB, XS) = {x 2 X : x 2 CS(XB
[ {x}, XS)},

8B(XS, XB) = {x 2 X : x 2 CB(XS
[ {x}, XB)}.

Proof of Theorem 14.20. The key to the proof is the following version of
Lemma 14.4.

Lemma 14.21. In supply chains, if (XS, XB) is a fixed point of 8, then A =

XS \ XB is chain-stable and CB(XB, XS) = CS(XS, XB) = A. Conversely, in
supply chains in which the choice functions of all agents are fully substitutable, if
A is a chain-stable outcome, then 8N(A, A) is a fixed point of 8 for sufficiently
large N.

Proof sketch. The proof of Lemma 14.21 is similar to the proof of
Lemma 14.4, but is more subtle due to the presence of the intermediaries.

Assume first that (XS, XB) is a fixed point of 8 and let A = XS \ XB.
A similar argument to the proof of Lemma 14.4 shows that CB(XB, XS) =

CS(XS, XB) = A, and, as in the proof of Lemma 14.4, it follows that A is
individually rational. To show that A is chain-unblocked, one can inductively
apply the argument from the proof of Lemma 14.4 to show that fixed points
give rise to pairwise unblocked outcomes. We leave the details of this inductive
argument as an exercise for the reader.

Next, let A be a chain-stable outcome and let (XS(n), XB(n)) = 8n(A, A) for
positive integers n. A similar argument to the proof of Lemma 14.4 shows that
XS(1) \ XB(1) = A. One then shows inductively that XS(n) \ XB(n) = A, that
XS(n) ◆ XS(n � 1), and that XB(n) ◆ XB(n � 1); again we leave the details
of this argument as an exercise for the reader. As X is finite, it follows that
8|X |(A, A) is a fixed point of 8.

Considering the ordering ` on X ⇥ X introduced in the proof of The-
orem 14.3, full substitutability implies that 8 is isotone with respect to
`. As a result, Tarski’s fixed point theorem guarantees that 8 has a fixed
point (XS, XB). By Lemma 14.21, CB(XS, XB) = CS(XB, XS) is a stable
outcome.

We next extend the concept of stability to supply chain settings and compare it to
chain stability.
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Definition 14.22. An outcome A ✓ X is stable if it is:

1. Individually rational: For all i 2 I , Ci(A) = Ai.
2. Unblocked: There does not exist a set Z = {z1, . . . , zn} ✓ X \ A such that

Zi ✓ Ci(Z [ A) for all i 2 I .

The following straightforward extension of Theorem 14.6 shows that in supply
chains in which agents have fully substitutable choice functions, if an outcome is not
blocked by a chain of contracts then it is also not blocked by more general sets of
contracts.

Theorem 14.23 [21]. In supply chains, if the choice functions of all agents are
fully substitutable then every chain-stable outcome is stable.

As in the case of two-sided many-to-many markets, full substitutability comprises
a maximal domain for the guaranteed existence of stable outcomes.

Theorem 14.24 [21]. In supply chains, if the choice function of an agent i is not
fully substitutable and for all distinct j, k 2 I there exists (i, j, t) 2 X for some
t 2 T, then there exist substitutable choice functions for the other agents such
that no stable outcome exists.

14.4.2 Trading Networks

To understand the role of the acyclicity assumption in Theorem 14.20, we show via
example that (chain-)stable outcomes may not exist in general trading networks, even
under full substitutability.

Example 14.25. There are two intermediaries i1, i2 and one buyer b. The set
of contracts is X = {x, y, z} and we have that s(x) = s(z) = b(y) = i1, that
s(y) = b(x) = i2, and that b(z) = b. Note that the contracts x and y comprise
a cycle. The agents’ choice functions are induced by the preferences

�i1 : {y, z} �i1 {x, y} �i1 ?
�i2 : {x, y} �i2 ?
�b : {z} �b ?;

these choice functions are fully substitutable.
However, there is no chain-stable outcome. To see why, note that the only

individually rational outcomes are {x, y} and ?. But {x, y} blocks the outcome
?, while {z} blocks the outcome {x, y}.

In fact, in trading networks, it is NP-complete to determine whether a stable out-
come exists as well as whether a given outcome is stable – even if all agents’ choice
functions are fully substitutable [11]. To analyze trading networks with cycles, we
therefore consider a different extension of pairwise stability to trading networks.
Under this concept, which we call trail stability, blocking contracts occur in a
sequence and agents evaluate pairs of consecutive contracts in isolation rather than
in reference to the entire set of blocking contracts.
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14 GENERALIZED MATCHING: CONTRACTS AND NETWORKS

Definition 14.26. An outcome A ✓ X is trail-stable if it is:

1. Individually rational: For all i 2 I , Ci(A) = Ai.
2. Trail unblocked: There does not exist a sequence z1, . . . , zn 2 X \ A of con-

tracts such that s(z`) = b(z`+1) and {z`, z`+1} ✓ Cs(z`)({z`, z`+1} [ A) for all
1  `  n � 1, z1 2 Cs(i1)({z1} [ A), and zn 2 Cb(zn)({zn} [ A).

In supply chains, trail stability coincides with chain stability. To understand the
difference between the two concepts in general trading networks, note that in Exam-
ple 14.25, the outcome ? is a trail-stable outcome but is not chain-stable. Trail-stable
outcomes turn out to exist in general trading networks under full substitutability.

Theorem 14.27 [12]. If the choice functions of all agents are fully substitutable
then trail-stable outcomes exist.

To prove Theorem 14.27, we apply the fixed-point argument from the proof of
Theorem 14.20 but use the following extension of Lemma 14.21 to trading networks.

Lemma 14.28 [1]. If (XS, XB) is a fixed point of 8. then A = XS \ XB is trail-
stable and CB(XB, XS) = CS(XS, XB) = A. Conversely, if the choice functions
of all agents are fully substitutable and A is a trail-stable outcome then8N(A, A)
is a fixed point of 8 for sufficiently large N.

The proof of Lemma 14.28 is similar to the proof of Lemma 14.21, and is left as
an exercise for the reader.

14.5 Transfers
Finally, we consider a setting with continuous transfers. A contract x is now a pair
(!, p!) 2 � ⇥ R that specifies a bilateral trade ! 2 � between a buyer b(!) 2 I
and a seller s(!) 2 I \ {b(!)} in exchange for a monetary transfer p! (to be paid
to the seller from the buyer). The set of possible contracts is X ⌘ � ⇥ R. A set of
contracts Y ✓ X is feasible if it does not contain two or more contracts for the same
trade: formally, Y is feasible if (!, p!), (!, p̂!) 2 Y implies that p! = p̂!. We call a
feasible set of contracts an outcome. An outcome specifies a set of trades along with
associated prices but does not specify prices for trades that are not in that set. We let
⌧ (Y ) be the set of trades that are associated with some contract in Y , i.e.,

⌧ (Y ) ⌘ { 2 9 : ( , p ) 2 Y for some p 2 R}.

An arrangement is a pair [9; p] with 9 ✓ � and p 2 R�. Note that an arrangement
specifies prices for all the trades in the economy.

Each agent i has a valuation (or preferences) ui : }(�i) ! R [ {�1} over the
sets of trades in which they are involved, with ui(?) 2 R; we use ui( ) = �1 to
denote that  is infeasible for i. The valuation ui over bundles of trades gives rise
to a quasilinear utility function Ui over bundles of trades and associated transfers.
Specifically, for any feasible set of contracts Y ✓ X , we define

Ui(Y ) ⌘ ui(⌧ (Y )) +

X

(!,p!)2Yi!

p! �

X

(!,p!)2Y!i

p!,
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and, slightly abusing the notation, for any arrangement [9; p] we define

Ui([9; p]) ⌘ ui(9) +

X

 29i!

p �

X

 29!i

p .

The demand correspondence of agent i, given a price vector p 2 R�, is defined by

Di(p) ⌘ arg max
9✓�i

{Ui([9; p])}.

There is a natural analogue of the full substitutability condition for demand cor-
respondences: whenever the price of an input (i.e., a trade in �!i) increases, then
i’s demand for other inputs weakly increases (in the superset sense) and her supply
of outputs (i.e., trades in �i!) weakly decreases (in the subset sense); an analogous
condition is required for the case where the price of an output decreases. As shown
by [27], full substitutability for demand correspondences is equivalent to full sub-
stitutability for choice correspondences (as well as several other conditions). Hence,
from now on we will simply say that agents’ preferences are fully substitutable. We
now formally define competitive equilibria for our setting.

Definition 14.29. An arrangement [9; p] is a competitive equilibrium if, for all
i 2 I ,

9i 2 Di(p).

The theorem below shows that competitive equilibria exist, and are essentially
equivalent to stable outcomes, when agents’ preferences are fully substitutable.8

Theorem 14.30 [25]. If agents’ preferences are fully substitutable then com-
petitive equilibria exist and are stable. Furthermore, for any stable outcome
A, there exist prices p�\⌧ (A) for the non-realized trades in � \ ⌧ (A) such that
[⌧ (A), (p⌧ (A), p�\⌧ (A))] is a competitive equilibrium.

Finally, we relax the assumption that utility is perfectly transferable between
agents. We suppose that instead of depending quasilinearly on net payments, util-
ity can depend arbitrarily on the entire vector of payments. That is, we suppose that
each agent i has a utility function Ui : }(�i) ⇥ R�i ! R [ {�1}, and define utility
over feasible sets Y of contracts by

Ui(Y ) ⌘ Ui(⌧ (Y ), t(Y )),

where

t(Y ) =

8
><

>:

p! if ! 2 ⌧ (Y )i!, where (!, p!) 2 Y ,
�p! if ! 2 ⌧ (Y )!i, where (!, p!) 2 Y ,
0 otherwise.

This framework allows us to incorporate the possibility of frictions, such as dis-
tortionary taxes on payments on different trades. As with the quasilinear case, the
full substitutability condition extends to this setting with continuous prices. In this

8 The existence of competitive equilibria has also been shown in related exchange economy settings (see,
e.g., [15], [43], [44]) in which each agent can only be a buyer or a seller.
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setting, under full substitutability and regularity conditions on agents’ utility func-
tions, competitive equilibria exist and essentially coincide with trail-stable outcomes.
Nevertheless, stable outcomes do not generally exist when distortionary frictions are
present. Intuitively, distortions do not preclude the existence of equilibrium but they
can cause equilibrium to be inefficient; however, trail-stable outcomes can often be
blocked by agents who can coordinate transfers in ways that reduce the impact of
the frictions.

14.5.1 Applications

One possible market design application of the trading network framework is peer-
to-peer energy trading. Many energy markets around the world are shifting from
large-scale centralized power generation towards inflexible, small-scale, renewable
energy resources. In these energy markets, there are not only traditional suppliers
(which we model as sellers) and traditional consumers (which we model as buyers),
but also many “prosumers” (consumers who also generate power, e.g., using resi-
dential solar panels; we model these as intermediaries). Contracts specify a discrete
quantity of energy offered by one agent to another at a given time and price. It turns
out that full substitutability is a reasonable approximation of preferences of agents
in such an energy market [37], [38] if, for example, economies of scale in genera-
tion are absent. Trail-stable outcomes can be computed second-by-second, thereby
maintaining overall system balance without any recourse to a centralized system
operator.

14.6 Exercises

Exercise 14.1 Explain why the last statement of Example 14.13 is true.

Exercise 14.2 Assume one seller has the non-substitutable preferences given in
Example 14.13. Construct (multi-unit) preferences for other buyers and sellers
in such a way that no stable outcome exists. (At least one buyer will have to have
multi-unit demand – why?)

Exercise 14.3 Prove that if one seller has preferences given by (with b(x) 6= b(y) =

b(y0) 6= b(z) 6= b(x))

{x, y, z} � {y0
} � {x, z} � {x, y} � {y, z} � {x} � {z} � {y} � ?,

and if the preferences of the other sellers are substitutable, and buyers have unit-
demand preferences, then a stable outcome must exist.

Exercise 14.4 Complete the proof of Lemma 14.21 or Lemma 14.28.
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